Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added Gradient Boosting Classifier #10944

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
118 changes: 118 additions & 0 deletions machine_learning/gradient_boosting_classifier.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
import numpy as np
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor


class GradientBoostingClassifier:
def __init__(self, n_estimators: int = 100, learning_rate: float = 0.1) -> None:
"""
Initialize a GradientBoostingClassifier.

Parameters:
- n_estimators (int): The number of weak learners to train.
- learning_rate (float): The learning rate for updating the model.

Attributes:
- n_estimators (int): The number of weak learners.
- learning_rate (float): The learning rate.
- models (list): A list to store the trained weak learners.
"""
self.n_estimators = n_estimators
self.learning_rate = learning_rate
self.models: list[tuple[DecisionTreeRegressor, float]] = []

def fit(self, features: np.ndarray, target: np.ndarray) -> None:
"""
Fit the GradientBoostingClassifier to the training data.

Parameters:
- features (np.ndarray): The training features.
- target (np.ndarray): The target values.

Returns:
None

>>> import numpy as np
>>> from sklearn.datasets import load_iris
>>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1)
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> clf.fit(X, y)
>>> # Check if the model is trained
>>> len(clf.models) == 100
True
"""
for _ in range(self.n_estimators):
# Calculate the pseudo-residuals
residuals = -self.gradient(target, self.predict(features))
# Fit a weak learner (e.g., decision tree) to the residuals
model = DecisionTreeRegressor(max_depth=1)
model.fit(features, residuals)
# Update the model by adding the weak learner with a learning rate
self.models.append((model, self.learning_rate))

def predict(self, features: np.ndarray) -> np.ndarray:
"""
Make predictions on input data.

Parameters:
- features (np.ndarray): The input data for making predictions.

Returns:
- np.ndarray: An array of binary predictions (-1 or 1).

>>> import numpy as np
>>> from sklearn.datasets import load_iris
>>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1)
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> clf.fit(X, y)
>>> y_pred = clf.predict(X)
>>> # Check if the predictions have the correct shape
>>> y_pred.shape == y.shape
True
"""
# Initialize predictions with zeros
predictions = np.zeros(features.shape[0])
for model, learning_rate in self.models:
predictions += learning_rate * model.predict(features)
return np.sign(predictions) # Convert to binary predictions (-1 or 1)

def gradient(self, target: np.ndarray, y_pred: np.ndarray) -> np.ndarray:
"""
Calculate the negative gradient (pseudo-residuals) for logistic loss.

Parameters:
- target (np.ndarray): The target values.
- y_pred (np.ndarray): The predicted values.

Returns:
- np.ndarray: An array of pseudo-residuals.

>>> import numpy as np
>>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1)
>>> target = np.array([0, 1, 0, 1])
>>> y_pred = np.array([0.2, 0.8, 0.3, 0.7])
>>> residuals = clf.gradient(target, y_pred)
>>> # Check if residuals have the correct shape
>>> residuals.shape == target.shape
True
"""
return -target / (1 + np.exp(target * y_pred))


if __name__ == "__main__":
iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)

clf = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1)
clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")