Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 34 additions & 0 deletions machine_learning/loss_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -629,6 +629,40 @@ def smooth_l1_loss(y_true: np.ndarray, y_pred: np.ndarray, beta: float = 1.0) ->
return np.mean(loss)


def kullback_leibler_divergence(y_true: np.ndarray, y_pred: np.ndarray) -> float:
"""
Calculate the Kullback-Leibler divergence (KL divergence) loss between true labels
and predicted probabilities.

KL divergence loss quantifies dissimilarity between true labels and predicted
probabilities. It's often used in training generative models.

KL = Σ(y_true * ln(y_true / y_pred))

Reference: https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

Parameters:
- y_true: True class probabilities
- y_pred: Predicted class probabilities

>>> true_labels = np.array([0.2, 0.3, 0.5])
>>> predicted_probs = np.array([0.3, 0.3, 0.4])
>>> kullback_leibler_divergence(true_labels, predicted_probs)
0.030478754035472025
>>> true_labels = np.array([0.2, 0.3, 0.5])
>>> predicted_probs = np.array([0.3, 0.3, 0.4, 0.5])
>>> kullback_leibler_divergence(true_labels, predicted_probs)
Traceback (most recent call last):
...
ValueError: Input arrays must have the same length.
"""
if len(y_true) != len(y_pred):
raise ValueError("Input arrays must have the same length.")

kl_loss = y_true * np.log(y_true / y_pred)
return np.sum(kl_loss)


if __name__ == "__main__":
import doctest

Expand Down