Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Reduce the complexity of digital_image_processing/edge detection/canny.py #8167

Merged
1 change: 1 addition & 0 deletions DIRECTORY.md
Original file line number Diff line number Diff line change
Expand Up @@ -317,6 +317,7 @@
* [Longest Sub Array](dynamic_programming/longest_sub_array.py)
* [Matrix Chain Order](dynamic_programming/matrix_chain_order.py)
* [Max Non Adjacent Sum](dynamic_programming/max_non_adjacent_sum.py)
* [Max Product Subarray](dynamic_programming/max_product_subarray.py)
* [Max Sub Array](dynamic_programming/max_sub_array.py)
* [Max Sum Contiguous Subsequence](dynamic_programming/max_sum_contiguous_subsequence.py)
* [Min Distance Up Bottom](dynamic_programming/min_distance_up_bottom.py)
Expand Down
129 changes: 75 additions & 54 deletions digital_image_processing/edge_detection/canny.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,105 +18,126 @@ def gen_gaussian_kernel(k_size, sigma):
return g


def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255):
image_row, image_col = image.shape[0], image.shape[1]
# gaussian_filter
gaussian_out = img_convolve(image, gen_gaussian_kernel(9, sigma=1.4))
# get the gradient and degree by sobel_filter
sobel_grad, sobel_theta = sobel_filter(gaussian_out)
gradient_direction = np.rad2deg(sobel_theta)
gradient_direction += PI

dst = np.zeros((image_row, image_col))

def suppress_non_maximum(image_shape, gradient_direction, sobel_grad):
"""
Non-maximum suppression. If the edge strength of the current pixel is the largest
compared to the other pixels in the mask with the same direction, the value will be
preserved. Otherwise, the value will be suppressed.
"""
for row in range(1, image_row - 1):
for col in range(1, image_col - 1):
destination = np.zeros(image_shape)

for row in range(1, image_shape[0] - 1):
for col in range(1, image_shape[1] - 1):
direction = gradient_direction[row, col]

if (
0 <= direction < 22.5
0 <= direction < PI / 8
or 15 * PI / 8 <= direction <= 2 * PI
or 7 * PI / 8 <= direction <= 9 * PI / 8
):
w = sobel_grad[row, col - 1]
e = sobel_grad[row, col + 1]
if sobel_grad[row, col] >= w and sobel_grad[row, col] >= e:
dst[row, col] = sobel_grad[row, col]
destination[row, col] = sobel_grad[row, col]

elif (PI / 8 <= direction < 3 * PI / 8) or (
9 * PI / 8 <= direction < 11 * PI / 8
elif (
PI / 8 <= direction < 3 * PI / 8
or 9 * PI / 8 <= direction < 11 * PI / 8
):
sw = sobel_grad[row + 1, col - 1]
ne = sobel_grad[row - 1, col + 1]
if sobel_grad[row, col] >= sw and sobel_grad[row, col] >= ne:
dst[row, col] = sobel_grad[row, col]
destination[row, col] = sobel_grad[row, col]

elif (3 * PI / 8 <= direction < 5 * PI / 8) or (
11 * PI / 8 <= direction < 13 * PI / 8
elif (
3 * PI / 8 <= direction < 5 * PI / 8
or 11 * PI / 8 <= direction < 13 * PI / 8
):
n = sobel_grad[row - 1, col]
s = sobel_grad[row + 1, col]
if sobel_grad[row, col] >= n and sobel_grad[row, col] >= s:
dst[row, col] = sobel_grad[row, col]
destination[row, col] = sobel_grad[row, col]

elif (5 * PI / 8 <= direction < 7 * PI / 8) or (
13 * PI / 8 <= direction < 15 * PI / 8
elif (
5 * PI / 8 <= direction < 7 * PI / 8
or 13 * PI / 8 <= direction < 15 * PI / 8
):
nw = sobel_grad[row - 1, col - 1]
se = sobel_grad[row + 1, col + 1]
if sobel_grad[row, col] >= nw and sobel_grad[row, col] >= se:
dst[row, col] = sobel_grad[row, col]

"""
High-Low threshold detection. If an edge pixel’s gradient value is higher
than the high threshold value, it is marked as a strong edge pixel. If an
edge pixel’s gradient value is smaller than the high threshold value and
larger than the low threshold value, it is marked as a weak edge pixel. If
an edge pixel's value is smaller than the low threshold value, it will be
suppressed.
"""
if dst[row, col] >= threshold_high:
dst[row, col] = strong
elif dst[row, col] <= threshold_low:
dst[row, col] = 0
destination[row, col] = sobel_grad[row, col]

return destination


def detect_high_low_threshold(
image_shape, destination, threshold_low, threshold_high, weak, strong
):
"""
High-Low threshold detection. If an edge pixel’s gradient value is higher
than the high threshold value, it is marked as a strong edge pixel. If an
edge pixel’s gradient value is smaller than the high threshold value and
larger than the low threshold value, it is marked as a weak edge pixel. If
an edge pixel's value is smaller than the low threshold value, it will be
suppressed.
"""
for row in range(1, image_shape[0] - 1):
for col in range(1, image_shape[1] - 1):
if destination[row, col] >= threshold_high:
destination[row, col] = strong
elif destination[row, col] <= threshold_low:
destination[row, col] = 0
else:
dst[row, col] = weak
destination[row, col] = weak


def track_edge(image_shape, destination, weak, strong):
"""
Edge tracking. Usually a weak edge pixel caused from true edges will be connected
to a strong edge pixel while noise responses are unconnected. As long as there is
one strong edge pixel that is involved in its 8-connected neighborhood, that weak
edge point can be identified as one that should be preserved.
"""
for row in range(1, image_row):
for col in range(1, image_col):
if dst[row, col] == weak:
for row in range(1, image_shape[0]):
for col in range(1, image_shape[1]):
if destination[row, col] == weak:
if 255 in (
dst[row, col + 1],
dst[row, col - 1],
dst[row - 1, col],
dst[row + 1, col],
dst[row - 1, col - 1],
dst[row + 1, col - 1],
dst[row - 1, col + 1],
dst[row + 1, col + 1],
destination[row, col + 1],
destination[row, col - 1],
destination[row - 1, col],
destination[row + 1, col],
destination[row - 1, col - 1],
destination[row + 1, col - 1],
destination[row - 1, col + 1],
destination[row + 1, col + 1],
):
dst[row, col] = strong
destination[row, col] = strong
else:
dst[row, col] = 0
destination[row, col] = 0


def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255):
# gaussian_filter
gaussian_out = img_convolve(image, gen_gaussian_kernel(9, sigma=1.4))
# get the gradient and degree by sobel_filter
sobel_grad, sobel_theta = sobel_filter(gaussian_out)
gradient_direction = PI + np.rad2deg(sobel_theta)

destination = suppress_non_maximum(image.shape, gradient_direction, sobel_grad)

detect_high_low_threshold(
image.shape, destination, threshold_low, threshold_high, weak, strong
)

track_edge(image.shape, destination, weak, strong)

return dst
return destination


if __name__ == "__main__":
# read original image in gray mode
lena = cv2.imread(r"../image_data/lena.jpg", 0)
# canny edge detection
canny_dst = canny(lena)
cv2.imshow("canny", canny_dst)
canny_destination = canny(lena)
cv2.imshow("canny", canny_destination)
cv2.waitKey(0)