Skip to content

TheoPerochon/Test_DeepMap

Repository files navigation

DeepCellMap

Algorithms associated with the submission of the paper titled "Spatiotemporal mapping of human microglia during brain development with advanced spatial statistics assisted by deep-learning" to Nature Methods.

Alternative text

This directory contains all the source code needed to reproduce the results of the paper using different notebooks (doc/src/notebooks). Some intermediate results have been provided (doc/data) to speed up the calculation of spatiotemporal statistics on several pre-defined regions of interest.

  • 3 IHC images of human fetal brain at 17,19 and 20 pcw.
  • Model classification microglial cells
  • Segmented & classified cells for the three IHC images.

Resultat de l'application du model de segmentation et de classification des cellules microgliales à l'ensemble des images. Cet output peut être généré dans DeepCellMap_notebook_1.d mais prend du temps (entre 7h/image et 30h/image selon la machine et la taille de l'image). - Masks of the 4 anatomical regions (striatum, neocortex, cordical boundary, ganglionic eminence) for the three times. - Mask of a manually segmented region. Ce Resultat peut être reproduis avec le notebook

Notes sur les notebooks : Les DeepCellMap notebooks 1/2/3 servent à guider pas à pas dans l'application du pipeline à toutes les images.

Performs the different steps

  • a.Image downscaling
  • b.Mask extraction
  • c.Tiling
  • d.Cells classification on the entire images

Performs the different steps - a.Selection ROIs in tissue - b.Visualisation ROI and cells - c.Cell-cell colocalisation - d.Cell-Border colocalisation - e.DBSCAN-based clusters analysis - f.Neighbors analysis

Performs the different steps : - a.Selection of regions to compare over time - b.Generation of statistical figures

Performs the different steps : - a.Cellpose best model selection - b.Cellpose application on the entire images - c.Anatomical region segmentation using image processing

Performs the different steps : - a.Manual selection of a ROI

Performs the different steps : - a.Random selection of microglial cells in an image - b.Annotation of the different cells - c.Visualisation and correction

Python files used in the notebooks

const.py:Contains all project constants and parameters
const_roi.py:ROI definition
util.py:Displaying functions, paths/image manipulation, measurement calculation time
region_of_interest.py:Central - Contains the RegionOfInterest class for reconstructing an ROI and performing calculations on it
slide.py:Used in image pre-processing - IHC image manipulation, downscaling
filter.py:Used in image pre-processing - Tissue extraction, filtering functions
tiles.py:Used in image pre-processing - Images tiling, generation of summary html
segmentation.py:Microglial cell segmentation functions
training_set_constitution.py:Used to create the training database
train_classification_model.py:and train the Unet Deep-Learning classification model
classification.py:Use to classify microglial cells on an entire image
training_set_constitution.py:
colocalisation_analysis.py:Algorithms for Cell-cell colocalisation and Cell-region's border colocalisation analysis
dbscan.py:Algorithms for cluster analysis based on DBSCAN
neighbours_analysis.py:Algorithms for analysing neighbour-neighbour relationships
util_cellpose.py:Algorithms for region segmentation based on nuclei density obtained by cellpose
deepcellmap.py:Defines ROIs and applies the pipeline on them, gathers the results in dataframes for spatiotemporal analysis
display_statistics.py:Generates statistical figures

Releases

No releases published

Packages

No packages published

Languages