Skip to content

Thinkre/GLAM

Repository files navigation

GLAM

By Wenjing Zhu, Xiang Li.

Du Xiaoman

Introduction

GLobal-Aware Multi-scale (GLAM) is a novel neural network to learn multi-scale feature representation with global-aware fusion module to attend emotional information for Speech Emotion Recognition (SER).

This repository contains the implementation used for the results in our paper.

GLAM

Requirements and Installation

  • Python version 3.6
  • PyTorch
  • g_mlp_pytorch
  • area_attention
  • pytorch_model_summary

Preprocess

  1. specify path of IEMOCAP corpus in path.py
  2. run python handleIEMOCAP.py to rename audio filename.
  3. run python seeds.py to generate seeds.

Training

Use python train.py to train a new model.

Run directly: ./run(to make the script executable: chmod +x run) or bash run.

Training scripts are stored in scripts directory. Please move the script to root directory in this repository before execute it.

GLAM

  • training on improvised dataset.

    ./GLAM

  • training on scripted dataset.

    ./GLAM_script

  • training on full dataset.

    ./GLAM_all

MACNN

  • training on improvised dataset.

    ./MACNN

  • training on scripted dataset.

    ./MACNN_script

  • training on full dataset.

    ./MACNN_all

CNN + Attention pooling

  • training on improvised dataset.

    ./attnpooling

  • training on scripted dataset.

    ./attnpooling_script

  • training on full dataset.

    ./attnpooling_all

Ablation study

Results

Confusion matrix on Improvisation dataset. a) and b) represent results of AACNN and GLAM model respectively. confusion

Visualizations of hidden states by commonly-used t- SNE method on improvisation dataset for four models: a) APCNN; b) MHCNN; c) AACNN; d) GLAM. tsne

Comparison of evaluation metrics on three types of datasets.

Dataset Model WA UA macro F1 micro F1
Improvisation APCNN 70.73+/-2.57 67.96+/-2.66 68.26+/-3.17 70.20+/-3.00
Improvisation MHCNN 76.09+/-2.01 73.87+/-2.31 74.27+/-2.25 75.91+/-2.05
Improvisation AACNN 78.47+/-2.42 76.68+/-3.29 76.69+/-3.27 78.29+/-2.58
Improvisation GLAM 81.18+/-1.47 79.25+/-1.88 79.87+/-1.64 80.99+/-1.50
Script APCNN 55.95+/-2.93 54.86+/-2.74 48.75+/-3.71 51.15+/-3.87
Script MHCNN 64.57+/-2.12 63.42+/-2.14 61.46+/-2.50 63.36+/-2.56
Script AACNN 67.20+/-4.78 65.94+/-6.19 64.82+/-7.63 66.55+/-6.99
Script GLAM 71.44+/-2.05 70.39+/-2.13 69.56+/-2.13 70.91+/-2.12
Full APCNN 62.53+/-1.43 62.80+/-1.53 61.89+/-1.52 62.12+/-1.50
Full MHCNN 69.80+/-1.69 70.09+/-1.74 69.65+/-1.73 69.68+/-1.71
Full AACNN 70.94+/-5.08 71.04+/-4.84 70.59+/-6.34 70.71+/-6.44
Full GLAM 73.70+/-1.25 73.90+/-1.31 73.51+/-1.29 73.60+/-1.27

Performance of multi-scale module and global- aware module on Improvisation dataset.

Model WA UA macro F1 micro F1
GLAM 81.18+/-1.47 79.25+/-1.88 79.87+/-1.64 80.99+/-1.50
Multi-scale 80.89 +/- 1.43 78.85 +/- 1.65 79.47 +/- 1.60 80.67 +/- 1.45
Multi-scale + MHA 80.43 +/- 1.53 78.92 +/- 1.92 79.20 +/- 1.68 80.26 +/- 1.53
Multi-scale + AA 80.61 +/- 1.75 79.09 +/- 1.75 79.47 +/- 1.80 80.46 +/- 1.77
MHCNN 76.09 +/- 2.01 73.87 +/- 2.31 74.27 +/- 2.25 75.91 +/- 2.05
AACNN 78.47 +/- 2.42 76.68 +/- 3.29 76.69 +/- 3.27 78.29 +/- 2.58

Result of (\alpha) on Improvisation dataset.

(\alpha) WA UA macro F1 micro F1
0 80.44 +/- 1.54 78.88 +/- 1.66 79.31 +/- 1.55 80.32 +/- 1.55
0.3 81.15 +/- 1.73 79.26 +/- 1.98 79.88 +/- 1.85 80.98 +/- 1.76
0.5 81.18+/-1.47 79.25+/-1.88 79.87+/-1.64 80.99+/-1.50
0.8 80.97 +/- 1.53 78.97 +/- 1.85 79.62 +/- 1.75 80.79 +/- 1.53
1 80.96 +/- 1.72 79.19 +/- 1.92 79.65 +/- 1.88 80.78 +/- 1.73
2 80.80 +/- 1.39 79.18 +/- 1.66 79.55 +/- 1.50 80.64 +/- 1.40
3 80.61 +/- 1.45 78.95 +/- 1.58 79.26 +/- 1.59 80.44 +/- 1.45

Split the dataset into training, validation and testing sets at a ratio of 8:1:1.

Dataset Model WA UA macro F1 micro F1
Improvisation APCNN 69.93 +/- 4.33 62.70 +/- 5.16 63.04 +/- 5.94 68.86 +/- 5.48
Improvisation MHCNN 76.13 +/- 2.80 71.15 +/- 4.11 71.91 +/- 3.92 75.92 +/- 2.87
Improvisation AACNN 78.65+/-3.30 74.31+/-4.59 74.78+/-4.43 78.47+/-3.40
Improvisation GLAM 81.04 +/- 2.65 75.89 +/- 3.94 76.79 +/- 3.78 80.78 +/- 2.75
Script APCNN 53.48 +/- 3.83 55.77 +/- 3.60 48.14 +/- 4.27 48.10 +/- 4.90
Script MHCNN 63.03 +/- 3.52 64.37 +/- 3.24 61.32 +/- 3.88 61.77 +/- 4.31
Script AACNN 65.49+/-3.49 65.87+/-2.98 64.36+/-3.42 65.22+/-3.77
Script GLAM 69.80 +/- 3.16 70.63 +/- 3.17 68.85 +/- 3.40 69.30 +/- 3.42
Full APCNN 60.33 +/- 2.67 62.16 +/- 2.55 60.03 +/- 2.78 59.67 +/- 2.88
Full MHCNN 67.67 +/- 2.34 68.65 +/- 2.32 67.55 +/- 2.34 67.58 +/- 2.36
Full AACNN 67.71+/-2.25 68.67+/-2.22 67.62+/-2.32 67.46+/-2.33
Full GLAM 71.63 +/- 2.12 72.56 +/- 2.05 71.53 +/- 2.16 71.42 +/- 2.19

Citation

If you use this method or this code in your paper, then please cite it:

@INPROCEEDINGS{
GLAM,
title={Speech Emotion Recognition with Global-Aware Fusion on Multi-scale Feature Representation},
booktitle={Proceedings of the 2022 {IEEE} International Conference on Acoustics, Speech and Signal Processing}
author={Wenjing Zhu, Xiang Li},
publisher = {{IEEE}},
journal={ICASSP},
year={2022},
url={https://github.com/lixiangucas01/GLAM},
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published