Skip to content

Commit

Permalink
Merge pull request #2 from Thmoas-Guan/master
Browse files Browse the repository at this point in the history
angle_trash
  • Loading branch information
Mosente authored Nov 19, 2023
2 parents c5f9f2f + 76c3e20 commit 15117af
Show file tree
Hide file tree
Showing 3 changed files with 54 additions and 13 deletions.
28 changes: 18 additions & 10 deletions EuclideanGeometry/Example/SCHAUM/Problem1.1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -17,16 +17,17 @@ variable {A B C : P} {hnd: ¬ colinear A B C} {hisoc: (▵ A B C).IsIsoceles}
--Let $D$ be a point on $AB$.
variable {D : P} {D_on_seg: D LiesInt (SEG A B)}
--Let $E$ be a point on $AC$
variable {E : P} {E_on_seg: E LiesInt (SEG A B)}
variable {E : P} {E_on_seg: E LiesInt (SEG A C)}
--such that $AE = AD$.
variable {E_ray_position : (SEG A E).length = (SEG A D).length}
--Let $M$ be the midpoint of $BC$.
variable {M : P} {median_M_position : M = (SEG B C).midpoint}
--Prove that $DM = EM$.
theorem Problem1_1_ : (SEG D M).length = (SEG E M).length := by
--the first edge of congruence
have h₀ : (SEG A B).length = (SEG A C).length := by
sorry
calc
_ = (SEG C A).length := hisoc.symm
_ = (SEG A C).length := length_eq_length_of_rev (SEG C A)
have h₁ : ¬ colinear B D M := by sorry
have h₂ : ¬ colinear C E M := by sorry
--to confirm the definition of angle is not invalid
Expand All @@ -41,21 +42,28 @@ theorem Problem1_1_ : (SEG D M).length = (SEG E M).length := by
--the second edge of congruence
have h₃ : (SEG B D).length = (SEG C E).length := by
calc
(SEG B D).length = (SEG A B).length - (SEG A D).length := by
sorry
(SEG B D).length = (SEG D B).length := length_eq_length_of_rev (SEG B D)
_=(SEG A B).length - (SEG A D).length := by
rw [← eq_sub_of_add_eq']
rw []
exact (length_eq_length_add_length (SEG A B) D (D_on_seg)).symm
_= (SEG A C).length - (SEG A D).length := by rw [h₀]
_= (SEG A C).length - (SEG A E).length := by rw [E_ray_position]
_= (SEG C E).length := by
sorry
_= (SEG E C).length := by
rw [← eq_sub_of_add_eq']
exact (length_eq_length_add_length (SEG A C) E (E_on_seg)).symm
_= (SEG C E).length := length_eq_length_of_rev (SEG E C)
have h₄ : (SEG M B).length = (SEG M C).length := by
have h₄₁ : (SEG M B).length = (SEG B M).length := by sorry
have h₄₁ : (SEG M B).length = (SEG B M).length := length_eq_length_of_rev (SEG M B)
rw[h₄₁]
rw [median_M_position]
apply dist_target_eq_dist_source_of_midpt
have h₅ : ∠ D B M (d_ne_b) (m_ne_b) = -∠ E C M (e_ne_c) (m_ne_c) := by
have h₅₁ : -∠ E C M (e_ne_c) (m_ne_c) = -∠ A C B (a_ne_c) (b_ne_c) := by sorry
have h₅₁ : -∠ E C M (e_ne_c) (m_ne_c) = -∠ A C B (a_ne_c) (b_ne_c) := by
sorry
rw [h₅₁]
have h₅₂ : ∠ D B M (d_ne_b) (m_ne_b) = -∠ C B A (c_ne_b) (a_ne_b) := by sorry
have h₅₂ : ∠ D B M (d_ne_b) (m_ne_b) = -∠ C B A (c_ne_b) (a_ne_b) := by
sorry
rw [h₅₂]
have h₅₃ : ∠ C B A (c_ne_b) (a_ne_b) = ∠ A C B (a_ne_c) (b_ne_c) := by
apply (is_isoceles_tri_iff_ang_eq_ang_of_nd_tri (tri_nd := ⟨▵ A B C, hnd⟩)).mp
Expand Down
35 changes: 33 additions & 2 deletions EuclideanGeometry/Example/SCHAUM/Problem1.3.lean
Original file line number Diff line number Diff line change
Expand Up @@ -23,10 +23,41 @@ variable {D_E_seg_position : (SEG B D).length = (SEG C E).length}
--B ≠ A and C ≠ A by hnd
lemma b_ne_a : B ≠ A := (ne_of_not_colinear hnd).2.2
lemma c_ne_a : C ≠ A := (ne_of_not_colinear hnd).2.1.symm
lemma a_ne_b : A ≠ B := (ne_of_not_colinear hnd).2.2.symm
lemma a_ne_c : A ≠ C := (ne_of_not_colinear hnd).2.1
lemma b_ne_c : B ≠ C := (ne_of_not_colinear hnd).1.symm
lemma c_ne_b : C ≠ B := (ne_of_not_colinear hnd).1
--D ≠ A and E ≠ A
lemma d_ne_a : D ≠ A := sorry
lemma e_ne_a : E ≠ A := sorry
lemma d_ne_b : D ≠ B := sorry
lemma e_ne_c : E ≠ C := sorry
--Prove that $DM = EM$.
theorem Problem1_3_ : ∠ D A B (d_ne_a) (b_ne_a (hnd := hnd))= ∠ C A E (c_ne_a (hnd := hnd)) (e_ne_a) := sorry

theorem Problem1_3_ : ∠ D A B (d_ne_a) (b_ne_a (hnd := hnd))= ∠ C A E (c_ne_a (hnd := hnd)) (e_ne_a) := by
--the first edge of congruence
have h₀ : (SEG B A).length = (SEG C A).length := by
calc
_= (SEG A B).length := length_eq_length_of_rev (SEG B A)
_= (SEG C A).length := hisoc.symm
have hnd₁ : ¬ colinear B A D := by sorry
have hnd₂ : ¬ colinear C A E := by sorry
have h₁ : (SEG D B).length = (SEG E C).length := by
calc
_= (SEG B D).length := length_eq_length_of_rev (SEG D B)
_= (SEG C E).length := D_E_seg_position
_= (SEG E C).length := length_eq_length_of_rev (SEG C E)
have h₂ : ∠ A B D (a_ne_b (hnd := hnd)) (d_ne_b) = -∠ A C E (a_ne_c (hnd := hnd)) (e_ne_c) := by
have h₂₁ : ∠ A B D (a_ne_b (hnd := hnd)) (d_ne_b) = -∠ C B A (c_ne_b (hnd := hnd)) (a_ne_b (hnd := hnd)) := by sorry
have h₂₂ : ∠ A C E (a_ne_c (hnd := hnd)) (e_ne_c) = ∠ A C B (a_ne_c (hnd := hnd)) (b_ne_c (hnd := hnd)) := by sorry
rw[h₂₁]
rw[h₂₂]
have h₂₀ : ∠ C B A (c_ne_b (hnd := hnd)) (a_ne_b (hnd := hnd)) = ∠ A C B (a_ne_c (hnd := hnd)) (b_ne_c (hnd := hnd)) := by
apply (is_isoceles_tri_iff_ang_eq_ang_of_nd_tri (tri_nd := ⟨▵ A B C, hnd⟩)).mp
exact hisoc
rw[← h₂₀]
have h₃ : TRI_nd B A D hnd₁ ≅ₐ TRI_nd C A E hnd₂ := by
apply Triangle_nd.acongr_of_SAS
· exact h₁
· exact h₂
· exact h₀
end Problem1_3_
4 changes: 3 additions & 1 deletion EuclideanGeometry/Foundation/Axiom/Position/Angle_trash.lean
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,8 @@ theorem start_ray_todir_rev_todir_of_ang_rev_ang {ang₁ ang₂ : Angle P} (hs :

theorem angle_value_eq_angle (A : P) (ray : Ray P) (h : A ≠ ray.1) : (Angle.mk_ray_pt ray A h).value = Vec_nd.angle ray.2.toVec_nd (VEC_nd ray.source A h) := sorry

theorem angle_slide_vertice (A A' B B' O: P) (h₁ : A ≠ O) (h₂ : B ≠ O) (h₁' : A' ≠ O) (h₂' : B' ≠ O) (LiesInt1 : A' LiesInt (RAY O A h₁) ) (LiesInt2 : B' LiesInt (RAY O B h₂) ) : ANG A O B h₁ h₂ = ANG A' O B' h₁' h₂' := sorry
theorem eq_ang_of_lieson_lieson {A A' B B' O: P} (h₁ : A ≠ O) (h₂ : B ≠ O) (h₁' : A' ≠ O) (h₂' : B' ≠ O) (LiesInt1 : A' LiesInt (RAY O A h₁) ) (LiesInt2 : B' LiesInt (RAY O B h₂) ) : ANG A O B h₁ h₂ = ANG A' O B' h₁' h₂' := sorry

theorem neg_value_of_rev_ang {A B O: P} (h₁ : A ≠ O) (h₂ : B ≠ O) : ∠ A O B h₁ h₂ = -∠ B O A h₂ h₁ := sorry

end EuclidGeom

0 comments on commit 15117af

Please sign in to comment.