Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix FISTA and ISTA maths in docs #2012

Merged
merged 14 commits into from
Dec 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
76 changes: 30 additions & 46 deletions Wrappers/Python/cil/optimisation/algorithms/FISTA.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,23 +29,22 @@

class ISTA(Algorithm):

r"""Iterative Shrinkage-Thresholding Algorithm, see :cite:`BeckTeboulle_b`, :cite:`BeckTeboulle_a`.
r"""Iterative Shrinkage-Thresholding Algorithm (ISTA), see :cite:`BeckTeboulle_b`, :cite:`BeckTeboulle_a`, is used to solve:

Iterative Shrinkage-Thresholding Algorithm (ISTA)
.. math:: \min_{x} f(x) + g(x)

.. math:: x^{k+1} = \mathrm{prox}_{\alpha^{k} g}(x^{k} - \alpha^{k}\nabla f(x^{k}))
where :math:`f` is differentiable, and :math:`g` has a *simple* proximal operator.

is used to solve
In each update, the algorithm computes:

.. math:: \min_{x} f(x) + g(x)
.. math:: x_{k+1} = \mathrm{prox}_{\alpha g}(x_{k} - \alpha\nabla f(x_{k}))

where :math:`f` is differentiable, :math:`g` has a *simple* proximal operator and :math:`\alpha^{k}`
is the :code:`step_size` per iteration.
where :math:`\alpha` is the :code:`step_size`.

Note
----

For a constant step size, i.e., :math:`a^{k}=a` for :math:`k\geq1`, convergence of ISTA
For a constant step size, :math:`\alpha`, convergence of ISTA
is guaranteed if

.. math:: \alpha\in(0, \frac{2}{L}),
Expand All @@ -56,16 +55,16 @@ class ISTA(Algorithm):
----------

initial : DataContainer
Initial guess of ISTA.
Initial guess of ISTA. :math:`x_{0}`
f : Function
Differentiable function. If `None` is passed, the algorithm will use the ZeroFunction.
g : Function or `None`
Convex function with *simple* proximal operator. If `None` is passed, the algorithm will use the ZeroFunction.
step_size : positive :obj:`float` or child class of :meth:`cil.optimisation.utilities.StepSizeRule`', default = None
Step size for the gradient step of ISTA. If a float is passed, this is used as a constant step size. If a child class of :meth:`cil.optimisation.utilities.StepSizeRule`' is passed then it's method `get_step_size` is called for each update.
Step size for the gradient step of ISTA. If a float is passed, this is used as a constant step size. If a child class of :meth:`cil.optimisation.utilities.StepSizeRule` is passed then its method :meth:`get_step_size` is called for each update.
The default :code:`step_size` is a constant :math:`\frac{0.99*2}{L}` or 1 if `f=None`.
preconditioner: class with a `apply` method or a function that takes an initialised CIL function as an argument and modifies a provided `gradient`.
This could be a custom `preconditioner` or one provided in :meth:`~cil.optimisation.utilities.preconditoner`. If None is passed then `self.gradient_update` will remain unmodified.
preconditioner: class with an `apply` method or a function that takes an initialised CIL function as an argument and modifies a provided `gradient`.
This could be a custom `preconditioner` or one provided in :meth:`~cil.optimisation.utilities.preconditoner`. If None is passed then `self.gradient_update` will remain unmodified.


kwargs: Keyword arguments
Expand All @@ -85,7 +84,7 @@ class ISTA(Algorithm):
>>> f = LeastSquares(A, b=b, c=0.5)
>>> g = ZeroFunction()
>>> ig = Aop.domain
>>> ista = ISTA(initial = ig.allocate(), f = f, g = g, max_iteration=10)
>>> ista = ISTA(initial = ig.allocate(), f = f, g = g)
>>> ista.run()


Expand Down Expand Up @@ -229,25 +228,26 @@ def calculate_objective_function_at_point(self, x):

class FISTA(ISTA):

r"""Fast Iterative Shrinkage-Thresholding Algorithm, see :cite:`BeckTeboulle_b`, :cite:`BeckTeboulle_a`.
r"""Fast Iterative Shrinkage-Thresholding Algorithm (FISTA), see :cite:`BeckTeboulle_b`, :cite:`BeckTeboulle_a`, is used to solve:

.. math:: \min_{x} f(x) + g(x)

where :math:`f` is differentiable and :math:`g` has a *simple* proximal operator.


Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
In each update the algorithm completes the following steps:

.. math::

\begin{cases}
y_{k} = x_{k} - \alpha\nabla f(x_{k}) \\
x_{k+1} = \mathrm{prox}_{\alpha g}(y_{k})\\
t_{k+1} = \frac{1+\sqrt{1+ 4t_{k}^{2}}}{2}\\
y_{k+1} = x_{k} + \frac{t_{k}-1}{t_{k-1}}(x_{k} - x_{k-1})
x_{k} = \mathrm{prox}_{\alpha g}(y_{k} - \alpha\nabla f(y_{k}))\\
t_{k+1} = \frac{1+\sqrt{1+ 4t_{k}^{2}}}{2}\\
y_{k+1} = x_{k} + \frac{t_{k}-1}{t_{k+1}}(x_{k} - x_{k-1})
\end{cases}

is used to solve

.. math:: \min_{x} f(x) + g(x)
where :math:`\alpha` is the :code:`step_size`.

where :math:`f` is differentiable, :math:`g` has a *simple* proximal operator and :math:`\alpha^{k}`
is the :code:`step_size` per iteration.
Note that the above applies for :math:`k\geq 1`. For :math:`k=0`, :math:`x_{0}` and :math:`y_{0}` are initialised to `initial`, and :math:`t_{1}=1`.


Parameters
Expand All @@ -260,9 +260,9 @@ class FISTA(ISTA):
g : Function or `None`
Convex function with *simple* proximal operator. If `None` is passed, the algorithm will use the ZeroFunction.
step_size : positive :obj:`float` or child class of :meth:`cil.optimisation.utilities.StepSizeRule`', default = None
Step size for the gradient step of ISTA. If a float is passed, this is used as a constant step size. If a child class of :meth:`cil.optimisation.utilities.StepSizeRule`' is passed then it's method `get_step_size` is called for each update.
Step size for the gradient step of ISTA. If a float is passed, this is used as a constant step size. If a child class of :meth:`cil.optimisation.utilities.StepSizeRule` is passed then it's method :meth:`get_step_size` is called for each update.
The default :code:`step_size` is a constant :math:`\frac{1}{L}` or 1 if `f=None`.
preconditioner: class with a `apply` method or a function that takes an initialised CIL function as an argument and modifies a provided `gradient`.
preconditioner : class with an `apply` method or a function that takes an initialised CIL function as an argument and modifies a provided `gradient`.
This could be a custom `preconditioner` or one provided in :meth:`~cil.optimisation.utilities.preconditoner`. If None is passed then `self.gradient_update` will remain unmodified.

kwargs: Keyword arguments
Expand All @@ -283,7 +283,7 @@ class FISTA(ISTA):
>>> f = LeastSquares(A, b=b, c=0.5)
>>> g = ZeroFunction()
>>> ig = Aop.domain
>>> fista = FISTA(initial = ig.allocate(), f = f, g = g, max_iteration=10)
>>> fista = FISTA(initial = ig.allocate(), f = f, g = g)
>>> fista.run()

See also
Expand Down Expand Up @@ -319,14 +319,14 @@ def __init__(self, initial, f, g, step_size=None, preconditioner=None, **kwargs
step_size=step_size, preconditioner=preconditioner, **kwargs)

def update(self):
r"""Performs a single iteration of FISTA
r"""Performs a single iteration of FISTA. For :math:`k\geq 1`:

.. math::

\begin{cases}
x_{k+1} = \mathrm{prox}_{\alpha g}(y_{k} - \alpha\nabla f(y_{k}))\\
x_{k} = \mathrm{prox}_{\alpha g}(y_{k} - \alpha\nabla f(y_{k}))\\
t_{k+1} = \frac{1+\sqrt{1+ 4t_{k}^{2}}}{2}\\
y_{k+1} = x_{k} + \frac{t_{k}-1}{t_{k-1}}(x_{k} - x_{k-1})
y_{k+1} = x_{k} + \frac{t_{k}-1}{t_{k+1}}(x_{k} - x_{k-1})
\end{cases}

"""
Expand All @@ -349,19 +349,3 @@ def update(self):

self.x.subtract(self.x_old, out=self.y)
self.y.sapyb(((self.t_old-1)/self.t), self.x, 1.0, out=self.y)


if __name__ == "__main__":

from cil.optimisation.functions import L2NormSquared
from cil.optimisation.algorithms import GD
from cil.framework import ImageGeometry
f = L2NormSquared()
g = L2NormSquared()
ig = ImageGeometry(3, 4, 4)
initial = ig.allocate()
fista = FISTA(initial, f, g, step_size=1443432)
print(fista.is_provably_convergent())

gd = GD(initial=initial, objective=f, step_size=1023123)
print(gd.is_provably_convergent())
2 changes: 0 additions & 2 deletions docs/source/optimisation.rst
Original file line number Diff line number Diff line change
Expand Up @@ -96,14 +96,12 @@ ISTA
----
.. autoclass:: cil.optimisation.algorithms.ISTA
:members:
:special-members:
:inherited-members: run, update_objective_interval, max_iteration

FISTA
-----
.. autoclass:: cil.optimisation.algorithms.FISTA
:members:
:special-members:
:inherited-members: run, update_objective_interval, max_iteration

PDHG
Expand Down
Loading