Skip to content

[ICIC 2024] Official Pytorch Implementation for "PCLMix: Weakly Supervised Medical Image Segmentation via Pixel-Level Contrastive Learning and Dynamic Mix Augmentation"

License

Notifications You must be signed in to change notification settings

Torpedo2648/PCLMix

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PCLMix: Weakly Supervised Medical Image Segmentation via Pixel-Level Contrastive Learning and Dynamic Mix Augmentation

Pytorch implementation of our PCLMix (Weakly Supervised Medical Image Segmentation via Pixel-Level Contrastive Learning and Dynamic Mix Augmentation).

News

Congratulations! This work has been accepted by ICIC2024. Due to space limitations, this final submitted document represents an abridged version. The full version of this paper, including more detailed information and data, can be accessed at https://arxiv.org/abs/2405.06288.

Core idea

ugpcl

Overview of PCLMix

pclmix

Visual result

visual

Dataset

  • The ACDC dataset with mask annotations can be downloaded from: ACDC.
  • The Scribble annotations of ACDC can be downloaded from: Scribble.

Usage

  1. Clone the project.

    git clone https://github.com/Torpedo2648/PCLMix.git
  2. Train the model.

    python train_contrast.py --exp "PCLMix_contrast" --fold fold1 --contrast_weight 0.1 --het_weight 1.0 --unsup_m_weight 1.0 --tf_decoder_weight 0.4 --gpu 0
    python train_contrast.py --exp "PCLMix_contrast" --fold fold2 --contrast_weight 0.1 --het_weight 1.0 --unsup_m_weight 1.0 --tf_decoder_weight 0.4 --gpu 0
    python train_contrast.py --exp "PCLMix_contrast" --fold fold3 --contrast_weight 0.1 --het_weight 1.0 --unsup_m_weight 1.0 --tf_decoder_weight 0.4 --gpu 0
    python train_contrast.py --exp "PCLMix_contrast" --fold fold4 --contrast_weight 0.1 --het_weight 1.0 --unsup_m_weight 1.0 --tf_decoder_weight 0.4 --gpu 0
    python train_contrast.py --exp "PCLMix_contrast" --fold fold5 --contrast_weight 0.1 --het_weight 1.0 --unsup_m_weight 1.0 --tf_decoder_weight 0.4 --gpu 0
  3. Test the model.

    python test_cnn.py --exp "PCLMix_contrast" --gpu 0

Acknowledgement

The code is modified from TriMix, WSL4MIS and UGPCL.

Citations

@inproceedings{Lei2024PCLMixWS,
  title={PCLMix: Weakly Supervised Medical Image Segmentation via Pixel-Level Contrastive Learning and Dynamic Mix Augmentation},
  author={Yu Lei and Haolun Luo and Lituan Wang and Zhenwei Zhang and Lei Zhang},
  year={2024},
  url={https://api.semanticscholar.org/CorpusID:269740819}
}

About

[ICIC 2024] Official Pytorch Implementation for "PCLMix: Weakly Supervised Medical Image Segmentation via Pixel-Level Contrastive Learning and Dynamic Mix Augmentation"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published