Skip to content
/ hrw Public archive
forked from nspcc-dev/hrw

Golang HRW implementation

License

Notifications You must be signed in to change notification settings

TrueCloudLab/hrw

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Golang HRW implementation

Build Status codecov Report GitHub release

Rendezvous or highest random weight (HRW) hashing is an algorithm that allows clients to achieve distributed agreement on a set of k options out of a possible set of n options. A typical application is when clients need to agree on which sites (or proxies) objects are assigned to. When k is 1, it subsumes the goals of consistent hashing, using an entirely different method.

Install

go get github.com/nspcc-dev/hrw

Benchmark:

BenchmarkSort_fnv_10-8                                           4812801               240.9 ns/op           216 B/op          4 allocs/op
BenchmarkSort_fnv_100-8                                           434767              2600 ns/op            1848 B/op          4 allocs/op
BenchmarkSort_fnv_1000-8                                           20428             66116 ns/op           16440 B/op          4 allocs/op
BenchmarkSortByIndex_fnv_10-8                                    2505410               486.5 ns/op           352 B/op          7 allocs/op
BenchmarkSortByIndex_fnv_100-8                                    254556              4697 ns/op            1984 B/op          7 allocs/op
BenchmarkSortByIndex_fnv_1000-8                                    13581             88334 ns/op           16576 B/op          7 allocs/op
BenchmarkSortByValue_fnv_10-8                                    1761030               682.1 ns/op           592 B/op         18 allocs/op
BenchmarkSortByValue_fnv_100-8                                    258838              4675 ns/op            4480 B/op        108 allocs/op
BenchmarkSortByValue_fnv_1000-8                                    27027             44649 ns/op           40768 B/op       1008 allocs/op
BenchmarkSortHashersByValue_Reflection_fnv_10-8                  1013560              1249 ns/op             768 B/op         29 allocs/op
BenchmarkSortHashersByValue_Reflection_fnv_100-8                  106029             11414 ns/op            6096 B/op        209 allocs/op
BenchmarkSortHashersByValue_Reflection_fnv_1000-8                  10000            108977 ns/op           56784 B/op       2009 allocs/op
BenchmarkSortHashersByValue_Typed_fnv_10-8                       1577814               700.3 ns/op           584 B/op         17 allocs/op
BenchmarkSortHashersByValue_Typed_fnv_100-8                       215938              5024 ns/op            4472 B/op        107 allocs/op
BenchmarkSortHashersByValue_Typed_fnv_1000-8                       24447             46889 ns/op           40760 B/op       1007 allocs/op

BenchmarkSortByWeight_fnv_10-8                                   2924833               370.6 ns/op           448 B/op          8 allocs/op
BenchmarkSortByWeight_fnv_100-8                                   816069              1516 ns/op            2896 B/op          8 allocs/op
BenchmarkSortByWeight_fnv_1000-8                                   80391             17478 ns/op           24784 B/op          8 allocs/op
BenchmarkSortByWeightIndex_fnv_10-8                              1945612               550.3 ns/op           368 B/op          7 allocs/op
BenchmarkSortByWeightIndex_fnv_100-8                              140473              8084 ns/op            2000 B/op          7 allocs/op
BenchmarkSortByWeightIndex_fnv_1000-8                               5518            200949 ns/op           16592 B/op          7 allocs/op
BenchmarkSortByWeightValue_fnv_10-8                              1305580               909.8 ns/op           608 B/op         18 allocs/op
BenchmarkSortByWeightValue_fnv_100-8                              165410              6796 ns/op            4496 B/op        108 allocs/op
BenchmarkSortByWeightValue_fnv_1000-8                              17922             78555 ns/op           40784 B/op       1008 allocs/op
BenchmarkSortHashersByWeightValueReflection_fnv_10-8              454976              2229 ns/op             784 B/op         29 allocs/op
BenchmarkSortHashersByWeightValueReflection_fnv_100-8              76264             15332 ns/op            6112 B/op        209 allocs/op
BenchmarkSortHashersByWeightValueReflection_fnv_1000-8             80288             13192 ns/op            6112 B/op        209 allocs/op
BenchmarkSortHashersByWeightValueTyped_fnv_10-8                  1433113               901.4 ns/op           600 B/op         17 allocs/op
BenchmarkSortHashersByWeightValueTyped_fnv_100-8                  188626              5896 ns/op            4488 B/op        107 allocs/op
BenchmarkSortHashersByWeightValueTyped_fnv_1000-8                 178131              6518 ns/op            4488 B/op        107 allocs/op

Example

package main

import (
	"fmt"
	
	"github.com/TrueCloudLab/hrw"
)

func main() {
	// given a set of servers
	servers := []string{
		"one.example.com",
		"two.example.com",
		"three.example.com",
		"four.example.com",
		"five.example.com",
		"six.example.com",
	}

	// HRW can consistently select a uniformly-distributed set of servers for
	// any given key
	var (
		key = []byte("/examples/object-key")
		h   = hrw.Hash(key)
	)

	hrw.SortSliceByValue(servers, h)
	for id := range servers {
		fmt.Printf("trying GET %s%s\n", servers[id], key)
	}

	// Output:
	// trying GET three.example.com/examples/object-key
	// trying GET two.example.com/examples/object-key
	// trying GET five.example.com/examples/object-key
	// trying GET six.example.com/examples/object-key
	// trying GET one.example.com/examples/object-key
	// trying GET four.example.com/examples/object-key
}