rikai-yolov5
integrates Yolov5 implemented in PyTorch with Rikai. It is based
on the packaged ultralytics/yolov5.
There are two ways to use rikai-yolov5
.
rikai.mlflow.pytorch.log_model(
model,
"model",
OUTPUT_SCHEMA,
registered_model_name=registered_model_name,
model_type="yolov5",
)
Another way is setting the model_type in Rikai SQL:
CREATE MODEL mlflow_yolov5_m
MODEL_TYPE yolov5
OPTIONS (
device='cpu'
)
USING 'mlflow:///{registered_model_name}';
Name | Default Value | Description |
---|---|---|
conf_thres | 0.25 | NMS confidence threshold |
iou_thres | 0.45 | NMS IoU threshold |
max_det | 1000 | maximum number of detections per image |
image_size | 640 | Image width |
Here is a sample usage of the above options:
CREATE MODEL mlflow_yolov5_m
OPTIONS (
device='cpu',
iou_thres=0.5
)
USING 'mlflow:///{registered_model_name}';