Skip to content

TuneHQ/rag-workshop

Repository files navigation

NOTE: YOU will see alot of types declared as any, this is done due to time limitations of workshop, you should always use proper types.

Boilerplate Code

This repository contains prebuilt simple chat interface and Hello World GET and POST API examples.

What we'll build

An RAG application which can ingest and search through a given documentation and answers questions. The app will be a chat UI that will use the Marvel Universe wiki as data source.

Installation Setup

1. Install Node.js and Next.js

Node.Js (>= v18) : Installation
Next.js: Installation

If you're using Windows, a WSL setup too may be needed.

2. Get a free account on Supabase

Link: supabase.com

  • We need a Postgresql database with the extension pgvector installed.
  • Create account on supabase.com gives us a free Postgresql instance with pg_vector
  • Or install the db locally with the extension

Configuration

Using .env.example as a template create a .env file with the following values:

CHAT_API_KEY - API Key from the Model provider. For Tune AI you can obtain it from Profile > Access Keys section (check docs for detailed steps)

CHAT_API_HOST - If using Tune Studio, set this to https://proxy.tune.app (first value)

EMBEDDING_ENDPOINT - If using Tune Studio, set this to https://proxy.tune.app/v1/embeddings (first value)

MODEL - If using Tune Studio, set this to rohan/tune-gpt-4o (first value)

EMBEDDING_MODEL - If using Tune Studio, set this to openai/text-embedding-ada-002 (first value)

For the nextsection, you can obtain values from the Supabase dashboard

CHAT_API_KEY=sk-tune-tese
CHAT_API_HOST=https://proxy.tune.app // or https://api.openai.com/v1
EMBEDDING_ENDPOINT=https://proxy.tune.app/v1/embeddings // or https://api.openai.com/v1/embeddings
MODEL=rohan/tune-gpt-4o // or gpt-4o
EMBEDDING_MODEL=openai/text-embedding-ada-002 // or text-embedding-ada-002
NEXT_PUBLIC_SUPABASE_URL=https://---.supabase.co
SUPABASE_SERVICE_ROLE_KEY=ey....
DATABASE_URL=postgresql://postgres.---:---@aws-0-ap-south-1.pooler.supabase.com:5432/postgres?pgbouncer=true

Checkpoint

  1. Install the required dependencies using

    npm install
  2. You should be able to run the Next.js server using

    npm run dev

Go to http://localhost:3000 to see the chat interface. There should not be any errors in the console or on the page.

Database Setup

Run the following SQL commands in Supabase SQL editor to set up the databnse, and create documents table along with the match_documents SQL function.

-- Enable the pg_vector extension, makes the VECTOR data type available
CREATE EXTENSION vector;

-- Create the documents table
CREATE TABLE documents (
    "id" BIGSERIAL PRIMARY KEY,
    "content" TEXT,
    "embedding" VECTOR(1536),
    "url" TEXT,
    "title" TEXT
);

-- Create the match_documents function
-- Starts here
CREATE OR REPLACE FUNCTION match_documents (
    query_embedding VECTOR(1536),
    match_threshold FLOAT,
    match_count INT
)
RETURNS TABLE (
    id BIGINT,
    content TEXT,
    url TEXT,
    title TEXT,
    similarity FLOAT
)
LANGUAGE SQL STABLE
AS $$
    SELECT
        documents.id,
        documents.content,
        documents.url,
        documents.title,
        1 - (documents.embedding <=> query_embedding) AS similarity
    FROM documents
    WHERE documents.embedding <=> query_embedding < 1 - match_threshold
    ORDER BY documents.embedding <=> query_embedding
    LIMIT match_count;
$$;
-- Ends here

Prisma <-> Next.js Integration

Run npx prisma init followed by npx prisma db pull to generate the schema files.

Building Blocks

Basic Chat Completion

Defines a function, llmStream to interact with LLM API. This function is defined in utils/index.ts file, and used for responding to user queries in the chat interface.

Here is the code for the function:

export const llmStream = async ({
  messages,
  stream,
  temperature,
  max_tokens,
  is_recursive = false,
}: {
  stream: boolean,
  messages: {
    role: string,
    content: string,
  }[],
  max_tokens?: number,
  temperature?: number,
  is_recursive?: boolean,
}): Promise<any> => {
  const resp = await fetch(process.env.CHAT_API_HOST + "/chat/completions", {
    method: "POST",
    headers: {
      "Content-Type": "application/json",
      Authorization: "Bearer " + process.env.CHAT_API_KEY,
    },
    body: JSON.stringify({
      temperature: temperature,
      messages: messages,
      model: process.env.MODEL,
      stream: stream,
      max_tokens: max_tokens,
    }),
  });
  console.log(resp);
  return resp.body;
};

Use this function for the api/prompt endpoint (defined inside the app/api/prompt/route.ts file) to interact with the LLM API. The complete code for the file is as follows:

import { llmStream } from "@/utils";
import { StreamingTextResponse } from "ai";

export async function POST(req: Request) {
  const { messages, temperature, max_tokens, stream } = await req.json();

  const response = await llmStream({
    messages,
    temperature,
    max_tokens,
    stream,
  });
  console.log(response);

  return new StreamingTextResponse(response);
}

Generating and Saving Embeddings

Defines two functions, generateEmbeddings and saveEmbedding to generate and save embeddings respectively.

  • generateEmbeddings function: takes in the page content as input, uses the embedding model API to generate embeddings, and returns the embeddings.
  • saveEmbedding function: takes in the page content and the embeddings as input, and saves the embeddings to the database. Note that the embedding column's data type is VECTOR().
const generateEmbeddings = async (pageContent: {
  title: string,
  url: string,
  content: string,
}) => {
  const response = await fetch(`${process.env.EMBEDDING_ENDPOINT}`, {
    method: "POST",
    headers: {
      "Content-Type": "application/json",
      Authorization: "Bearer " + process.env.CHAT_API_KEY || "",
    },
    body: JSON.stringify({
      input: pageContent.content,
      model: process.env.EMBEDDING_MODEL,
    }),
  }).then((res) => res.json());
  return response?.data?.[0]?.embedding;
};

const saveEmbedding = async (
  pageContent: {
    title: string,
    url: string,
    content: string,
  },
  embedding: any
) => {
  await prisma.$queryRaw`INSERT INTO documents (title, url, content, embedding) values (${pageContent.title}, ${pageContent.url}, ${pageContent.content}, ${embedding})`;
};

Ingesting Web Page content

For every web page we want, we will

  1. Fetch the content of the page
  2. Extract the text from relevant sections (paragraphs, headings, etc.)
  3. Generate embeddings for the extracted text
  4. Save the embeddings to the database

We define a function injestWebPage (in the utils/index.ts file):

export const injestWebPage = async (url: string) => {
  const urlResp = await fetch(url).then((resp) => resp.text());
  const $ = load(urlResp);
  const title = $("title").text();
  const content = $("h1, h2, h3, table, p, span").text();
  console.log(title, content);
  let pageContent = {
    title: title,
    url: url,
    content: content,
  };
  const embedding = await generateEmbeddings(pageContent);
  // const embedding = "";

  saveEmbedding(pageContent, embedding);
};

We will now use this function for the /api/injest endpoint defined in the app/api/injest/route.ts file. The full contents of the file are as follows:

import { injestWebPage } from "@/utils";
import { getSitemapUrls } from "@/utils/bonus";

export async function GET() {
  const urls = (await getSitemapUrls(
    "https://studio.tune.app/docs/sitemap.xml"
  )) as any[];
  for (let i = 0; i < urls.length; i++) {
    await injestWebPage(urls[i]);
  }

  // const url = "https://studio.tune.app/docs/cookbook/supabase-rag";
  // const resp = await injestWebPage(url);
  return new Response(
    JSON.stringify({
      urls,
    }),
    {
      headers: {
        "content-type": "application/json",
      },
    }
  );
}

Fetching Similar Documents

Define a function getSimilarDocuments (in utils/index.ts) to fetch similar documents based on the query.

export const getSimilarDocuments = async (query: string) => {
  const supabaseClient = createClient(
    process.env.NEXT_PUBLIC_SUPABASE_URL,
    process.env.SUPABASE_SERVICE_ROLE_KEY
  );
  const embedding = await generateEmbeddings({
    title: "",
    url: "",
    content: query,
  });
  const data = await supabaseClient.rpc("match_documents", {
    query_embedding: embedding,
    match_threshold: 0.7,
    match_count: 3,
  });
  return data?.data?.map(
    (doc: { title: string, url: string, content: string, embedding: any }) => {
      return doc.content;
    }
  );
};

Chat completion with Function Call (Putting it all together)

Now, we modify the llmStream function to handle function calls and recursive calls.

The search_docs function calls' structure is defined in app/constants/index.ts file:

The LLM will indicate a function call in the response, and we will handle it by calling the getSimilarDocuments function and recursively calling the llmStream function with the added information from relevant documents.

export const llmStream = async ({
  messages,
  stream,
  temperature,
  max_tokens,
  is_recursive = false,
}: {
  stream: boolean;
  messages: {
    role: string;
    content: string;
  }[];
  max_tokens?: number;
  temperature?: number;
  is_recursive?: boolean;
}): Promise<any> => {
  const resp = (await fetch(process.env.CHAT_API_HOST + "/chat/completions", {
    method: "POST",
    headers: {
      "Content-Type": "application/json",
      Authorization: "Bearer " + process.env.CHAT_API_KEY,
    },
    body: JSON.stringify({
      temperature: temperature,
      messages: [
        {
          role: "system",
          content: constants.system,
        },
        ...messages,
      ],
      model: process.env.MODEL,
      stream: Boolean(is_recursive),
      max_tokens: max_tokens,
      tools: is_recursive ? undefined : constants.tools,
    }),
  })) as any;

  // New code to handle function calls
  // If the response is a function call, get similar documents and recursively call llmStream with content from top similar documents
  if (!is_recursive) {
    const temp = await resp.json();
    if (
      temp?.choices?.[0]?.message?.tool_calls?.[0]?.function?.name ===
      "search_docs"
    ) {
      const functionVals = JSON.parse(
        temp?.choices?.[0]?.message?.tool_calls?.[0]?.function?.arguments
      );
      const docs = await getSimilarDocuments(functionVals.query);
      return llmStream({
        messages: [
          ...messages,
          {
            role: "user",
            content: `Use below sources to answer above question ${docs?.join(
              "\n\n"
            )}`,
          },
        ],
        stream: true,
        is_recursive: true,
        max_tokens: max_tokens,
        temperature: temperature,
      });
    } else {
      console.log({ temp });
      return temp;
    }
  } else return resp.body;
};