Skip to content

UT-Austin-RPL/MUTEX

Repository files navigation

MUTEX: Learning Unified Policies from Multimodal Task Specifications

Image
Rutav Shah, Roberto Martín-Martín1, Yuke Zhu1
7th Annual Conference on Robot Learning
[Paper] [Project Website] [Dataset] [Pretrained Weights] [Real Robot Controller]
1 Equal Advising

Setup

Installation

git clone --recursive https://github.com/UT-Austin-RPL/MUTEX.git
cd MUTEX && git submodule update --init --recursive
conda create -n mutex python=3.8
conda activate mutex
pip install -r requirements.txt
pip install -e LIBERO/.
pip install -e .

Please set the argument folder= to the dataset directory in the configs.

To use pretrained weights, follow the evaluation instructions mentioned below.

Usage

Training

MUTEX is trained in two stages: a) Masked Modeling and b) Cross-Modal Matching.

To run Masked Modeling,

CUDA_VISIBLE_DEVICES=0 python3 mutex/main_masked_modeling.py \
        benchmark_name=LIBERO_100 \
        policy.task_spec_modalities=gl_inst_img_vid_ai_ag \
        policy.add_mim=True policy.add_mgm=True policy.add_mrm=True \
        policy.add_mfm=True policy.add_maim=True policy.add_magm=True \
        folder=dataset-path \
        hydra.run.dir=experiments/mutex

To run Cross-Modal Matching,

CUDA_VISIBLE_DEVICES=0 python3 mutex/main_cmm.py \
        benchmark_name=LIBERO_100 \
        folder=dataset-path \
        experiment_dir=experiments/mutex

Evaluation

MUTEX is a unified policy capable of executing tasks specified by any modality: video demonstration vid, image goal img, text goals gl, text instructions inst, speech goal ag, and speech instructions ai. To run the model after cross-modal matching at epoch 20 (used in the paper), set model_name=cmm_LIBERO_100_multitask_model_ep020.pth.
An example with text goal modality is given below,

MUJOCO_EGL_DEVICE_ID=0 CUDA_VISIBLE_DEVICES=0 python mutex/eval.py \
        benchmark_name=LIBERO_100 \
        folder=dataset-path \
        eval_spec_modalities=gl \
        experiment_dir=mutex_pretrained \
        model_name=mutex_weights.pth

Citation

@inproceedings{
    shah2023mutex,
    title={{MUTEX}: Learning Unified Policies from Multimodal Task Specifications},
    author={Rutav Shah and Roberto Mart{\'\i}n-Mart{\'\i}n and Yuke Zhu},
    booktitle={7th Annual Conference on Robot Learning},
    year={2023}
}

Acknowledgements: Mentioned here

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published