Skip to content

Commit

Permalink
Avoid escaped code in headers for min and max (#1299)
Browse files Browse the repository at this point in the history
As discussed in
#1292 (review)
.
  • Loading branch information
lowasser authored Feb 9, 2025
1 parent 5d2a1c2 commit 48a0b5a
Showing 1 changed file with 6 additions and 14 deletions.
20 changes: 6 additions & 14 deletions src/order-theory/decidable-total-orders.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -211,7 +211,7 @@ module _
( is-leq-or-strict-greater-Decidable-Total-Order T x y)
```

### `min x y ≤ x`
### The minimum is a lower bound

```agda
leq-left-min-Decidable-Total-Order :
Expand All @@ -220,11 +220,7 @@ module _
with is-leq-or-strict-greater-Decidable-Total-Order T x y
... | inl x≤y = refl-leq-Decidable-Total-Order T x
... | inr y<x = pr2 y<x
```

### `min x y ≤ y`

```agda
leq-right-min-Decidable-Total-Order :
leq-Decidable-Total-Order T min-Decidable-Total-Order y
leq-right-min-Decidable-Total-Order
Expand All @@ -233,7 +229,7 @@ module _
... | inr y<x = refl-leq-Decidable-Total-Order T y
```

### `x ≤ max x y`
### The maximum of two values is an upper bound

```agda
leq-left-max-Decidable-Total-Order :
Expand All @@ -242,11 +238,7 @@ module _
with is-leq-or-strict-greater-Decidable-Total-Order T x y
... | inl x≤y = x≤y
... | inr y<x = refl-leq-Decidable-Total-Order T x
```

### `y ≤ max x y`

```agda
leq-right-max-Decidable-Total-Order :
leq-Decidable-Total-Order T y max-Decidable-Total-Order
leq-right-max-Decidable-Total-Order
Expand All @@ -255,7 +247,7 @@ module _
... | inr y<x = pr2 y<x
```

### `min` is commutative
### The minimum operation is commutative

```agda
module _
Expand All @@ -280,7 +272,7 @@ module _
( antisymmetric-leq-Decidable-Total-Order T x y (pr2 x<y) (pr2 y<x)))
```

### `max` is commutative
### The maximum operation is commutative

```agda
commutative-max-Decidable-Total-Order :
Expand All @@ -299,7 +291,7 @@ module _
( antisymmetric-leq-Decidable-Total-Order T x y (pr2 x<y) (pr2 y<x)))
```

### `min x y` is the greatest lower bound of `x` and `y`
### The minimum of two values is their greatest lower bound

```agda
min-is-greatest-binary-lower-bound-Decidable-Total-Order :
Expand Down Expand Up @@ -329,7 +321,7 @@ module _
min-is-greatest-binary-lower-bound-Decidable-Total-Order
```

### `max x y` is the least upper bound of `x` and `y`
### The maximum of two values is their least upper bound

```agda
max-is-least-binary-upper-bound-Decidable-Total-Order :
Expand Down

0 comments on commit 48a0b5a

Please sign in to comment.