Skip to content

Commit

Permalink
[bug-fix] Fix POCA LSTM, pad sequences in the back (#5206)
Browse files Browse the repository at this point in the history
* Pad buffer at the end

* Fix padding in optimizer value estimate

* Fix additional bugs and POCA

* Fix groupmate obs, add tests

* Update changelog

* Improve tests

* Address comments

* Fix poca test

* Fix buffer test

* Increase entropy for Hallway

* Add EOF newline

* Fix Behavior Name

* Address comments
  • Loading branch information
Ervin T authored Apr 5, 2021
1 parent 314f9e7 commit 2ce6810
Show file tree
Hide file tree
Showing 8 changed files with 125 additions and 130 deletions.
1 change: 1 addition & 0 deletions com.unity.ml-agents/CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@ depend on the previous behavior, you can explicitly set the Agent's `InferenceDe
settings. Unfortunately, this may require retraining models if it changes the resulting order of the sensors
or actuators on your system. (#5194)
#### ml-agents / ml-agents-envs / gym-unity (Python)
- Fixed an issue which was causing increased variance when using LSTMs. Also fixed an issue with LSTM when used with POCA and `sequence_length` < `time_horizon`. (#5206)
- Fixed a bug where the SAC replay buffer would not be saved out at the end of a run, even if `save_replay_buffer` was enabled. (#5205)

## [1.9.0-preview] - 2021-03-17
Expand Down
2 changes: 1 addition & 1 deletion config/ppo/Hallway.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ behaviors:
batch_size: 128
buffer_size: 1024
learning_rate: 0.0003
beta: 0.01
beta: 0.03
epsilon: 0.2
lambd: 0.95
num_epoch: 3
Expand Down
2 changes: 1 addition & 1 deletion ml-agents/mlagents/trainers/buffer.py
Original file line number Diff line number Diff line change
Expand Up @@ -180,7 +180,7 @@ def get_batch(
else:
# We want to duplicate the last value in the array, multiplied by the padding_value.
padding = np.array(self[-1], dtype=np.float32) * self.padding_value
return [padding] * (training_length - leftover) + self[:]
return self[:] + [padding] * (training_length - leftover)

else:
return self[len(self) - batch_size * training_length :]
Expand Down
71 changes: 35 additions & 36 deletions ml-agents/mlagents/trainers/optimizer/torch_optimizer.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
from typing import Dict, Optional, Tuple, List
from mlagents.torch_utils import torch
import numpy as np
import math
from collections import defaultdict

from mlagents.trainers.buffer import AgentBuffer, AgentBufferField
from mlagents.trainers.trajectory import ObsUtil
Expand Down Expand Up @@ -76,53 +76,52 @@ def _evaluate_by_sequence(
"""
num_experiences = tensor_obs[0].shape[0]
all_next_memories = AgentBufferField()
# In the buffer, the 1st sequence are the ones that are padded. So if seq_len = 3 and
# trajectory is of length 10, the 1st sequence is [pad,pad,obs].
# Compute the number of elements in this padded seq.
leftover = num_experiences % self.policy.sequence_length

# Compute values for the potentially truncated initial sequence
seq_obs = []

first_seq_len = leftover if leftover > 0 else self.policy.sequence_length
for _obs in tensor_obs:
first_seq_obs = _obs[0:first_seq_len]
seq_obs.append(first_seq_obs)

# For the first sequence, the initial memory should be the one at the
# beginning of this trajectory.
for _ in range(first_seq_len):
all_next_memories.append(ModelUtils.to_numpy(initial_memory.squeeze()))

init_values, _mem = self.critic.critic_pass(
seq_obs, initial_memory, sequence_length=first_seq_len
)
all_values = {
signal_name: [init_values[signal_name]]
for signal_name in init_values.keys()
}

# When using LSTM, we need to divide the trajectory into sequences of equal length. Sometimes,
# that division isn't even, and we must pad the leftover sequence.
# When it is added to the buffer, the last sequence will be padded. So if seq_len = 3 and
# trajectory is of length 10, the last sequence is [obs,pad,pad] once it is added to the buffer.
# Compute the number of elements in this sequence that will end up being padded.
leftover_seq_len = num_experiences % self.policy.sequence_length

all_values: Dict[str, List[np.ndarray]] = defaultdict(list)
_mem = initial_memory
# Evaluate other trajectories, carrying over _mem after each
# trajectory
for seq_num in range(
1, math.ceil((num_experiences) / (self.policy.sequence_length))
):
for seq_num in range(num_experiences // self.policy.sequence_length):
seq_obs = []
for _ in range(self.policy.sequence_length):
all_next_memories.append(ModelUtils.to_numpy(_mem.squeeze()))
start = seq_num * self.policy.sequence_length - (
self.policy.sequence_length - leftover
)
end = (seq_num + 1) * self.policy.sequence_length - (
self.policy.sequence_length - leftover
)
start = seq_num * self.policy.sequence_length
end = (seq_num + 1) * self.policy.sequence_length

for _obs in tensor_obs:
seq_obs.append(_obs[start:end])
values, _mem = self.critic.critic_pass(
seq_obs, _mem, sequence_length=self.policy.sequence_length
)
for signal_name, _val in values.items():
all_values[signal_name].append(_val)

# Compute values for the potentially truncated last sequence. Note that this
# sequence isn't padded yet, but will be.
seq_obs = []

if leftover_seq_len > 0:
for _obs in tensor_obs:
last_seq_obs = _obs[-leftover_seq_len:]
seq_obs.append(last_seq_obs)

# For the last sequence, the initial memory should be the one at the
# end of this trajectory.
for _ in range(leftover_seq_len):
all_next_memories.append(ModelUtils.to_numpy(_mem.squeeze()))

last_values, _mem = self.critic.critic_pass(
seq_obs, _mem, sequence_length=leftover_seq_len
)
for signal_name, _val in last_values.items():
all_values[signal_name].append(_val)

# Create one tensor per reward signal
all_value_tensors = {
signal_name: torch.cat(value_list, dim=0)
Expand Down
147 changes: 70 additions & 77 deletions ml-agents/mlagents/trainers/poca/optimizer_torch.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
from typing import Dict, cast, List, Tuple, Optional
from collections import defaultdict
from mlagents.trainers.torch.components.reward_providers.extrinsic_reward_provider import (
ExtrinsicRewardProvider,
)
import numpy as np
import math
from mlagents.torch_utils import torch, default_device

from mlagents.trainers.buffer import (
Expand Down Expand Up @@ -381,116 +381,109 @@ def _evaluate_by_sequence_team(
num_experiences = self_obs[0].shape[0]
all_next_value_mem = AgentBufferField()
all_next_baseline_mem = AgentBufferField()
# In the buffer, the 1st sequence are the ones that are padded. So if seq_len = 3 and
# trajectory is of length 10, the 1st sequence is [pad,pad,obs].
# Compute the number of elements in this padded seq.
leftover = num_experiences % self.policy.sequence_length

# Compute values for the potentially truncated initial sequence

first_seq_len = leftover if leftover > 0 else self.policy.sequence_length

self_seq_obs = []
groupmate_seq_obs = []
groupmate_seq_act = []
seq_obs = []
for _self_obs in self_obs:
first_seq_obs = _self_obs[0:first_seq_len]
seq_obs.append(first_seq_obs)
self_seq_obs.append(seq_obs)

for groupmate_obs, groupmate_action in zip(obs, actions):
seq_obs = []
for _obs in groupmate_obs:
first_seq_obs = _obs[0:first_seq_len]
seq_obs.append(first_seq_obs)
groupmate_seq_obs.append(seq_obs)
_act = groupmate_action.slice(0, first_seq_len)
groupmate_seq_act.append(_act)

# For the first sequence, the initial memory should be the one at the
# beginning of this trajectory.
for _ in range(first_seq_len):
all_next_value_mem.append(ModelUtils.to_numpy(init_value_mem.squeeze()))
all_next_baseline_mem.append(
ModelUtils.to_numpy(init_baseline_mem.squeeze())
)

all_seq_obs = self_seq_obs + groupmate_seq_obs
init_values, _value_mem = self.critic.critic_pass(
all_seq_obs, init_value_mem, sequence_length=first_seq_len
)
all_values = {
signal_name: [init_values[signal_name]]
for signal_name in init_values.keys()
}
# When using LSTM, we need to divide the trajectory into sequences of equal length. Sometimes,
# that division isn't even, and we must pad the leftover sequence.
# In the buffer, the last sequence are the ones that are padded. So if seq_len = 3 and
# trajectory is of length 10, the last sequence is [obs,pad,pad].
# Compute the number of elements in this padded seq.
leftover_seq_len = num_experiences % self.policy.sequence_length

groupmate_obs_and_actions = (groupmate_seq_obs, groupmate_seq_act)
init_baseline, _baseline_mem = self.critic.baseline(
self_seq_obs[0],
groupmate_obs_and_actions,
init_baseline_mem,
sequence_length=first_seq_len,
)
all_baseline = {
signal_name: [init_baseline[signal_name]]
for signal_name in init_baseline.keys()
}
all_values: Dict[str, List[np.ndarray]] = defaultdict(list)
all_baseline: Dict[str, List[np.ndarray]] = defaultdict(list)
_baseline_mem = init_baseline_mem
_value_mem = init_value_mem

# Evaluate other trajectories, carrying over _mem after each
# trajectory
for seq_num in range(
1, math.ceil((num_experiences) / (self.policy.sequence_length))
):
for seq_num in range(num_experiences // self.policy.sequence_length):
for _ in range(self.policy.sequence_length):
all_next_value_mem.append(ModelUtils.to_numpy(_value_mem.squeeze()))
all_next_baseline_mem.append(
ModelUtils.to_numpy(_baseline_mem.squeeze())
)

start = seq_num * self.policy.sequence_length - (
self.policy.sequence_length - leftover
)
end = (seq_num + 1) * self.policy.sequence_length - (
self.policy.sequence_length - leftover
)
start = seq_num * self.policy.sequence_length
end = (seq_num + 1) * self.policy.sequence_length

self_seq_obs = []
groupmate_seq_obs = []
groupmate_seq_act = []
seq_obs = []
for _self_obs in self_obs:
seq_obs.append(_obs[start:end])
seq_obs.append(_self_obs[start:end])
self_seq_obs.append(seq_obs)

for groupmate_obs, team_action in zip(obs, actions):
for groupmate_obs, groupmate_action in zip(obs, actions):
seq_obs = []
for (_obs,) in groupmate_obs:
first_seq_obs = _obs[start:end]
seq_obs.append(first_seq_obs)
for _obs in groupmate_obs:
sliced_seq_obs = _obs[start:end]
seq_obs.append(sliced_seq_obs)
groupmate_seq_obs.append(seq_obs)
_act = team_action.slice(start, end)
_act = groupmate_action.slice(start, end)
groupmate_seq_act.append(_act)

all_seq_obs = self_seq_obs + groupmate_seq_obs
values, _value_mem = self.critic.critic_pass(
all_seq_obs, _value_mem, sequence_length=self.policy.sequence_length
)
all_values = {
signal_name: [init_values[signal_name]] for signal_name in values.keys()
}
for signal_name, _val in values.items():
all_values[signal_name].append(_val)

groupmate_obs_and_actions = (groupmate_seq_obs, groupmate_seq_act)
baselines, _baseline_mem = self.critic.baseline(
self_seq_obs[0],
groupmate_obs_and_actions,
_baseline_mem,
sequence_length=first_seq_len,
sequence_length=self.policy.sequence_length,
)
for signal_name, _val in baselines.items():
all_baseline[signal_name].append(_val)

# Compute values for the potentially truncated initial sequence
if leftover_seq_len > 0:
self_seq_obs = []
groupmate_seq_obs = []
groupmate_seq_act = []
seq_obs = []
for _self_obs in self_obs:
last_seq_obs = _self_obs[-leftover_seq_len:]
seq_obs.append(last_seq_obs)
self_seq_obs.append(seq_obs)

for groupmate_obs, groupmate_action in zip(obs, actions):
seq_obs = []
for _obs in groupmate_obs:
last_seq_obs = _obs[-leftover_seq_len:]
seq_obs.append(last_seq_obs)
groupmate_seq_obs.append(seq_obs)
_act = groupmate_action.slice(len(_obs) - leftover_seq_len, len(_obs))
groupmate_seq_act.append(_act)

# For the last sequence, the initial memory should be the one at the
# beginning of this trajectory.
seq_obs = []
for _ in range(leftover_seq_len):
all_next_value_mem.append(ModelUtils.to_numpy(_value_mem.squeeze()))
all_next_baseline_mem.append(
ModelUtils.to_numpy(_baseline_mem.squeeze())
)

all_seq_obs = self_seq_obs + groupmate_seq_obs
last_values, _value_mem = self.critic.critic_pass(
all_seq_obs, _value_mem, sequence_length=leftover_seq_len
)
for signal_name, _val in last_values.items():
all_values[signal_name].append(_val)
groupmate_obs_and_actions = (groupmate_seq_obs, groupmate_seq_act)
last_baseline, _baseline_mem = self.critic.baseline(
self_seq_obs[0],
groupmate_obs_and_actions,
_baseline_mem,
sequence_length=leftover_seq_len,
)
all_baseline = {
signal_name: [baselines[signal_name]]
for signal_name in baselines.keys()
}
for signal_name, _val in last_baseline.items():
all_baseline[signal_name].append(_val)
# Create one tensor per reward signal
all_value_tensors = {
signal_name: torch.cat(value_list, dim=0)
Expand Down
12 changes: 6 additions & 6 deletions ml-agents/mlagents/trainers/tests/test_buffer.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,9 +110,6 @@ def test_buffer():
np.array(a),
np.array(
[
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[201, 202, 203],
[211, 212, 213],
[221, 222, 223],
Expand All @@ -122,17 +119,20 @@ def test_buffer():
[261, 262, 263],
[271, 272, 273],
[281, 282, 283],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
]
),
)
# Test group entries return Lists of Lists. Make sure to pad properly!
a = agent_2_buffer[BufferKey.GROUP_CONTINUOUS_ACTION].get_batch(
batch_size=None, training_length=4, sequential=True
)
for _group_entry in a[:3]:
assert len(_group_entry) == 0
for _group_entry in a[3:]:
for _group_entry in a[:-3]:
assert len(_group_entry) == 3
for _group_entry in a[-3:]:
assert len(_group_entry) == 0

agent_1_buffer.reset_agent()
assert agent_1_buffer.num_experiences == 0
Expand Down
12 changes: 6 additions & 6 deletions ml-agents/mlagents/trainers/tests/torch/test_poca.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ def create_test_poca_optimizer(dummy_config, use_rnn, use_discrete, use_visual):
}

trainer_settings.network_settings.memory = (
NetworkSettings.MemorySettings(sequence_length=16, memory_size=10)
NetworkSettings.MemorySettings(sequence_length=8, memory_size=10)
if use_rnn
else None
)
Expand Down Expand Up @@ -125,7 +125,7 @@ def test_poca_get_value_estimates(dummy_config, rnn, visual, discrete):
optimizer = create_test_poca_optimizer(
dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual
)
time_horizon = 15
time_horizon = 30
trajectory = make_fake_trajectory(
length=time_horizon,
observation_specs=optimizer.policy.behavior_spec.observation_specs,
Expand All @@ -147,14 +147,14 @@ def test_poca_get_value_estimates(dummy_config, rnn, visual, discrete):
)
for key, val in value_estimates.items():
assert type(key) is str
assert len(val) == 15
assert len(val) == time_horizon
for key, val in baseline_estimates.items():
assert type(key) is str
assert len(val) == 15
assert len(val) == time_horizon

if value_memories is not None:
assert len(value_memories) == 15
assert len(baseline_memories) == 15
assert len(value_memories) == time_horizon
assert len(baseline_memories) == time_horizon

(
value_estimates,
Expand Down
Loading

0 comments on commit 2ce6810

Please sign in to comment.