Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Clang tidy diff testing #4

Closed
wants to merge 4 commits into from

Conversation

VarunNagaraju
Copy link
Owner

No description provided.

@VarunNagaraju VarunNagaraju force-pushed the clang-tidy-diff-testing branch 2 times, most recently from 0a7e8fb to 6b7d8ca Compare January 8, 2024 07:33
Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Clang-Tidy found issue(s) with the introduced code (1/1)

#define NAMED_THD_STAGE_GUARD(name, thd, new_stage) \
raii::Thread_stage_guard name { \
(thd), (new_stage), __func__, __FILE__, __LINE__ \
#define NAMED_THD_STAGE_GUARD(name, thd, new_stage) \
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ cppcoreguidelines-macro-usage ⚠️
function-like macro NAMED_THD_STAGE_GUARD used; consider a constexpr template function

NAMED_THD_STAGE_GUARD(_thread_stage_guard_##new_stage, (thd), (new_stage))

// NOLINTEND(cppcoreguidelines-macro-usage)
#define THD_STAGE_GUARD(thd,new_stage) \
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ cppcoreguidelines-macro-usage ⚠️
function-like macro THD_STAGE_GUARD used; consider a constexpr template function

@@ -363,8 +363,7 @@ class PayloadEventBufferStreamTest {
// "nolint": as a general rule, malloc should not be used, so
// clang-tidy warns about it. But this is an allocator so it is
// appropriate to use malloc and therefore we suppress the check.
// NOLINTNEXTLINE(cppcoreguidelines-no-malloc)
return std::malloc(n);
return std::malloc(n);
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ cppcoreguidelines-no-malloc ⚠️
do not manage memory manually; consider a container or a smart pointer

@@ -344,7 +337,7 @@ class Payload_event_buffer_istream {
/// Grow calculator for the Managed_buffer.
Grow_calculator_t m_grow_calculator;
/// Default buffer size for the Managed_buffer.
Size_t m_default_buffer_size;
Size_t m_default_buffer_size;
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ cppcoreguidelines-pro-type-member-init ⚠️
constructor does not initialize these fields: m_default_buffer_size

Suggested change
Size_t m_default_buffer_size;
Size_t m_default_buffer_size{};

#define ASSERTION_TAIL \
<< debug_output(fileline) << (_shall_stop_after_assertion = true,""), \
assert(!_shall_stop_after_assertion )
#define AEQ(v1,v2) \
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ cppcoreguidelines-macro-usage ⚠️
function-like macro AEQ used; consider a constexpr template function

ASSERT_EQ(v1,v2) ASSERTION_TAIL; \
++n_assertions; \
} while(0)
#define ANE(v1,v2) \
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ cppcoreguidelines-macro-usage ⚠️
function-like macro ANE used; consider a constexpr template function

#define CHECK_SIZES(POSITION, CAPACITY) \
check_sizes(FILELINE(), debug_output, mbs, buffer_size, POSITION, CAPACITY)
// NOLINTEND(cppcoreguidelines-macro-usage)
#define CHECK_SIZES(POSITION,CAPACITY) \
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ cppcoreguidelines-macro-usage ⚠️
function-like macro CHECK_SIZES used; consider a constexpr template function

<< ">1 shared pointer references to "
"it.");
// NOLINTEND(bugprone-branch-clone)
if (m_managed_buffer_ptr.use_count() == 0) {
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ bugprone-branch-clone ⚠️
if with identical then and else branches

@VarunNagaraju VarunNagaraju force-pushed the clang-tidy-diff-testing branch from 8cc0b59 to 10a2acb Compare January 10, 2024 09:53
VarunNagaraju pushed a commit that referenced this pull request Feb 14, 2024
…ocal DDL

         executed

https://perconadev.atlassian.net/browse/PS-9018

Problem
-------
In high concurrency scenarios, MySQL replica can enter into a deadlock due to a
race condition between the replica applier thread and the client thread
performing a binlog group commit.

Analysis
--------
It needs at least 3 threads for this deadlock to happen

1. One client thread
2. Two replica applier threads

How this deadlock happens?
--------------------------
0. Binlog is enabled on replica, but log_replica_updates is disabled.

1. Initially, both "Commit Order" and "Binlog Flush" queues are empty.

2. Replica applier thread 1 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

3. Since both "Commit Order" and "Binlog Flush" queues are empty, the applier
   thread 1

   3.1. Becomes leader (In Commit_stage_manager::enroll_for()).

   3.2. Registers in the commit order queue.

   3.3. Acquires the lock MYSQL_BIN_LOG::LOCK_log.

   3.4. Commit Order queue is emptied, but the lock MYSQL_BIN_LOG::LOCK_log is
        not yet released.

   NOTE: SE commit for applier thread is already done by the time it reaches
         here.

4. Replica applier thread 2 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

5. Since the "Commit Order" queue is empty (emptied by applier thread 1 in 3.4), the
   applier thread 2

   5.1. Becomes leader (In Commit_stage_manager::enroll_for())

   5.2. Registers in the commit order queue.

   5.3. Tries to acquire the lock MYSQL_BIN_LOG::LOCK_log. Since it is held by applier
        thread 1 it will wait until the lock is released.

6. Client thread enters the group commit pipeline to register in the
   "Binlog Flush" queue.

7. Since "Commit Order" queue is not empty (there is applier thread 2 in the
   queue), it enters the conditional wait `m_stage_cond_leader` with an
   intention to become the leader for both the "Binlog Flush" and
   "Commit Order" queues.

8. Applier thread 1 releases the lock MYSQL_BIN_LOG::LOCK_log and proceeds to update
   the GTID by calling gtid_state->update_commit_group() from
   Commit_order_manager::flush_engine_and_signal_threads().

9. Applier thread 2 acquires the lock MYSQL_BIN_LOG::LOCK_log.

   9.1. It checks if there is any thread waiting in the "Binlog Flush" queue
        to become the leader. Here it finds the client thread waiting to be
        the leader.

   9.2. It releases the lock MYSQL_BIN_LOG::LOCK_log and signals on the
        cond_var `m_stage_cond_leader` and enters a conditional wait until the
        thread's `tx_commit_pending` is set to false by the client thread
       (will be done in the
       Commit_stage_manager::process_final_stage_for_ordered_commit_group()
       called by client thread from fetch_and_process_flush_stage_queue()).

10. The client thread wakes up from the cond_var `m_stage_cond_leader`.  The
    thread has now become a leader and it is its responsibility to update GTID
    of applier thread 2.

    10.1. It acquires the lock MYSQL_BIN_LOG::LOCK_log.

    10.2. Returns from `enroll_for()` and proceeds to process the
          "Commit Order" and "Binlog Flush" queues.

    10.3. Fetches the "Commit Order" and "Binlog Flush" queues.

    10.4. Performs the storage engine flush by calling ha_flush_logs() from
          fetch_and_process_flush_stage_queue().

    10.5. Proceeds to update the GTID of threads in "Commit Order" queue by
          calling gtid_state->update_commit_group() from
          Commit_stage_manager::process_final_stage_for_ordered_commit_group().

11. At this point, we will have

    - Client thread performing GTID update on behalf if applier thread 2 (from step 10.5), and
    - Applier thread 1 performing GTID update for itself (from step 8).

    Due to the lack of proper synchronization between the above two threads,
    there exists a time window where both threads can call
    gtid_state->update_commit_group() concurrently.

    In subsequent steps, both threads simultaneously try to modify the contents
    of the array `commit_group_sidnos` which is used to track the lock status of
    sidnos. This concurrent access to `update_commit_group()` can cause a
    lock-leak resulting in one thread acquiring the sidno lock and not
    releasing at all.

-----------------------------------------------------------------------------------------------------------
Client thread                                           Applier Thread 1
-----------------------------------------------------------------------------------------------------------
update_commit_group() => global_sid_lock->rdlock();     update_commit_group() => global_sid_lock->rdlock();

calls update_gtids_impl_lock_sidnos()                   calls update_gtids_impl_lock_sidnos()

set commit_group_sidno[2] = true                        set commit_group_sidno[2] = true

                                                        lock_sidno(2) -> successful

lock_sidno(2) -> waits

                                                        update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

                                                        if (commit_group_sidnos[2]) {
                                                          unlock_sidno(2);
                                                          commit_group_sidnos[2] = false;
                                                        }

                                                        Applier thread continues..

lock_sidno(2) -> successful

update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

if (commit_group_sidnos[2]) { <=== this check fails and lock is not released.
  unlock_sidno(2);
  commit_group_sidnos[2] = false;
}

Client thread continues without releasing the lock
-----------------------------------------------------------------------------------------------------------

12. As the above lock-leak can also happen the other way i.e, the applier
    thread fails to unlock, there can be different consequences hereafter.

13. If the client thread continues without releasing the lock, then at a later
    stage, it can enter into a deadlock with the applier thread performing a
    GTID update with stack trace.

    Client_thread
    -------------
    #1  __GI___lll_lock_wait
    #2  ___pthread_mutex_lock
    #3  native_mutex_lock                                       <= waits for commit lock while holding sidno lock
    #4  Commit_stage_manager::enroll_for
    percona#5  MYSQL_BIN_LOG::change_stage
    percona#6  MYSQL_BIN_LOG::ordered_commit
    percona#7  MYSQL_BIN_LOG::commit
    percona#8  ha_commit_trans
    percona#9  trans_commit_implicit
    percona#10 mysql_create_like_table
    percona#11 Sql_cmd_create_table::execute
    percona#12 mysql_execute_command
    percona#13 dispatch_sql_command

    Applier thread
    --------------
    #1  ___pthread_mutex_lock
    #2  native_mutex_lock
    #3  safe_mutex_lock
    #4  Gtid_state::update_gtids_impl_lock_sidnos               <= waits for sidno lock
    percona#5  Gtid_state::update_commit_group
    percona#6  Commit_order_manager::flush_engine_and_signal_threads   <= acquires commit lock here
    percona#7  Commit_order_manager::finish
    percona#8  Commit_order_manager::wait_and_finish
    percona#9  ha_commit_low
    percona#10 trx_coordinator::commit_in_engines
    percona#11 MYSQL_BIN_LOG::commit
    percona#12 ha_commit_trans
    percona#13 trans_commit
    percona#14 Xid_log_event::do_commit
    percona#15 Xid_apply_log_event::do_apply_event_worker
    percona#16 Slave_worker::slave_worker_exec_event
    percona#17 slave_worker_exec_job_group
    percona#18 handle_slave_worker

14. If the applier thread continues without releasing the lock, then at a later
    stage, it can perform recursive locking while setting the GTID for the next
    transaction (in set_gtid_next()).

    In debug builds the above case hits the assertion
    `safe_mutex_assert_not_owner()` meaning the lock is already acquired by the
    replica applier thread when it tries to re-acquire the lock.

Solution
--------
In the above problematic example, when seen from each thread
individually, we can conclude that there is no problem in the order of lock
acquisition, thus there is no need to change the lock order.

However, the root cause for this problem is that multiple threads can
concurrently access to the array `Gtid_state::commit_group_sidnos`.

In its initial implementation, it was expected that threads should
hold the `MYSQL_BIN_LOG::LOCK_commit` before modifying its contents. But it
was not considered when upstream implemented WL#7846 (MTS:
slave-preserve-commit-order when log-slave-updates/binlog is disabled).

With this patch, we now ensure that `MYSQL_BIN_LOG::LOCK_commit` is acquired
when the client thread (binlog flush leader) when it tries to perform GTID
update on behalf of threads waiting in "Commit Order" queue, thus providing a
guarantee that `Gtid_state::commit_group_sidnos` array is never accessed
without the protection of `MYSQL_BIN_LOG::LOCK_commit`.
VarunNagaraju pushed a commit that referenced this pull request Feb 29, 2024
Part of WL#15135 Certificate Architecture

In Ndb_cluster_connection, this patch provides a new top-level
method configure_tls(). It also implements TLS initialization
in connect(), calling down through the TransporterFacade layer
to TransporterRegistry.

In the MySQL server this adds the new read-only configuration
option ndb-tls-search-path, with a compile-time default that is
configurable in CMake, WITH_NDB_TLS_SEARCH_PATH.

Unmodified API nodes that do not call into configure_tls() will
still be able to make TLS connections if keys are found
somewhere in the default search path.

Change-Id: Id1d046ff3c5a48a30131c3d15274f5ed625933a9
VarunNagaraju pushed a commit that referenced this pull request Feb 29, 2024
On Win32, every binary needs one instance of openssl/applink.c.

MySQL has one in client_authentication.cc, and this one is present
in the server and in the client library.

This patch adds instances to ndb_sign_keys, ndb_mgmd, ndbd,
and testNodeCertificate-t, and includes fixes for other
assorted compiler errors and warnings on Win32.

Change-Id: I2d7f940b92ddac7d860d2c6fc2d98ead23e195b2
VarunNagaraju pushed a commit that referenced this pull request Feb 29, 2024
In class Transporter, add two new member variables:
  m_require_tls is a boolean TLS requirement
  m_encrypted is true only when TLS is actually in use

A corresponding change in struct TransporterConfiguration also
adds authMode.

Some application logic is added in IPConfig.cpp to configure
the new variables.

On the server side, TransporterRegistry always uses a TLS
authenticator. On the client side, all Transporter clients
initialize a SocketAuthSimple authenticator, but then TCP
Transporter clients delete this in the TCP_Transporter
constructor and replace it with a TLS authenticator.

Change-Id: I6392eecfc712f8a8f500697f34324eea01d29a8c
VarunNagaraju pushed a commit that referenced this pull request Feb 29, 2024
In the NDB configuration, add boolen options RequireTls and
RequireCertificate to the [MGM] section. Both options default to
false.

Add a new test testMgmd -n MgmdWithoutCertificate

In NdbStdOpt, add the --ndb-mgm-tls command-line option. The allowed
values are "relaxed" and "strict". The default is "relaxed".  This option
will be used for utility programs, allowing the user to specify the
TLS-related behavior of MGM clients.

Change-Id: Id32bb8805ca19a8cf8b52f45c54a7be4d912c5e4
VarunNagaraju pushed a commit that referenced this pull request May 22, 2024
…ocal DDL

         executed

https://perconadev.atlassian.net/browse/PS-9018

Merge remote-tracking branch 'venki/PS-9018-8.0-gca' into HEAD

Problem
-------
In high concurrency scenarios, MySQL replica can enter into a deadlock due to a
race condition between the replica applier thread and the client thread
performing a binlog group commit.

Analysis
--------
It needs at least 3 threads for this deadlock to happen

1. One client thread
2. Two replica applier threads

How this deadlock happens?
--------------------------
0. Binlog is enabled on replica, but log_replica_updates is disabled.

1. Initially, both "Commit Order" and "Binlog Flush" queues are empty.

2. Replica applier thread 1 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

3. Since both "Commit Order" and "Binlog Flush" queues are empty, the applier
   thread 1

   3.1. Becomes leader (In Commit_stage_manager::enroll_for()).

   3.2. Registers in the commit order queue.

   3.3. Acquires the lock MYSQL_BIN_LOG::LOCK_log.

   3.4. Commit Order queue is emptied, but the lock MYSQL_BIN_LOG::LOCK_log is
        not yet released.

   NOTE: SE commit for applier thread is already done by the time it reaches
         here.

4. Replica applier thread 2 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

5. Since the "Commit Order" queue is empty (emptied by applier thread 1 in 3.4), the
   applier thread 2

   5.1. Becomes leader (In Commit_stage_manager::enroll_for())

   5.2. Registers in the commit order queue.

   5.3. Tries to acquire the lock MYSQL_BIN_LOG::LOCK_log. Since it is held by applier
        thread 1 it will wait until the lock is released.

6. Client thread enters the group commit pipeline to register in the
   "Binlog Flush" queue.

7. Since "Commit Order" queue is not empty (there is applier thread 2 in the
   queue), it enters the conditional wait `m_stage_cond_leader` with an
   intention to become the leader for both the "Binlog Flush" and
   "Commit Order" queues.

8. Applier thread 1 releases the lock MYSQL_BIN_LOG::LOCK_log and proceeds to update
   the GTID by calling gtid_state->update_commit_group() from
   Commit_order_manager::flush_engine_and_signal_threads().

9. Applier thread 2 acquires the lock MYSQL_BIN_LOG::LOCK_log.

   9.1. It checks if there is any thread waiting in the "Binlog Flush" queue
        to become the leader. Here it finds the client thread waiting to be
        the leader.

   9.2. It releases the lock MYSQL_BIN_LOG::LOCK_log and signals on the
        cond_var `m_stage_cond_leader` and enters a conditional wait until the
        thread's `tx_commit_pending` is set to false by the client thread
       (will be done in the
       Commit_stage_manager::process_final_stage_for_ordered_commit_group()
       called by client thread from fetch_and_process_flush_stage_queue()).

10. The client thread wakes up from the cond_var `m_stage_cond_leader`.  The
    thread has now become a leader and it is its responsibility to update GTID
    of applier thread 2.

    10.1. It acquires the lock MYSQL_BIN_LOG::LOCK_log.

    10.2. Returns from `enroll_for()` and proceeds to process the
          "Commit Order" and "Binlog Flush" queues.

    10.3. Fetches the "Commit Order" and "Binlog Flush" queues.

    10.4. Performs the storage engine flush by calling ha_flush_logs() from
          fetch_and_process_flush_stage_queue().

    10.5. Proceeds to update the GTID of threads in "Commit Order" queue by
          calling gtid_state->update_commit_group() from
          Commit_stage_manager::process_final_stage_for_ordered_commit_group().

11. At this point, we will have

    - Client thread performing GTID update on behalf if applier thread 2 (from step 10.5), and
    - Applier thread 1 performing GTID update for itself (from step 8).

    Due to the lack of proper synchronization between the above two threads,
    there exists a time window where both threads can call
    gtid_state->update_commit_group() concurrently.

    In subsequent steps, both threads simultaneously try to modify the contents
    of the array `commit_group_sidnos` which is used to track the lock status of
    sidnos. This concurrent access to `update_commit_group()` can cause a
    lock-leak resulting in one thread acquiring the sidno lock and not
    releasing at all.

-----------------------------------------------------------------------------------------------------------
Client thread                                           Applier Thread 1
-----------------------------------------------------------------------------------------------------------
update_commit_group() => global_sid_lock->rdlock();     update_commit_group() => global_sid_lock->rdlock();

calls update_gtids_impl_lock_sidnos()                   calls update_gtids_impl_lock_sidnos()

set commit_group_sidno[2] = true                        set commit_group_sidno[2] = true

                                                        lock_sidno(2) -> successful

lock_sidno(2) -> waits

                                                        update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

                                                        if (commit_group_sidnos[2]) {
                                                          unlock_sidno(2);
                                                          commit_group_sidnos[2] = false;
                                                        }

                                                        Applier thread continues..

lock_sidno(2) -> successful

update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

if (commit_group_sidnos[2]) { <=== this check fails and lock is not released.
  unlock_sidno(2);
  commit_group_sidnos[2] = false;
}

Client thread continues without releasing the lock
-----------------------------------------------------------------------------------------------------------

12. As the above lock-leak can also happen the other way i.e, the applier
    thread fails to unlock, there can be different consequences hereafter.

13. If the client thread continues without releasing the lock, then at a later
    stage, it can enter into a deadlock with the applier thread performing a
    GTID update with stack trace.

    Client_thread
    -------------
    #1  __GI___lll_lock_wait
    #2  ___pthread_mutex_lock
    #3  native_mutex_lock                                       <= waits for commit lock while holding sidno lock
    #4  Commit_stage_manager::enroll_for
    percona#5  MYSQL_BIN_LOG::change_stage
    percona#6  MYSQL_BIN_LOG::ordered_commit
    percona#7  MYSQL_BIN_LOG::commit
    percona#8  ha_commit_trans
    percona#9  trans_commit_implicit
    percona#10 mysql_create_like_table
    percona#11 Sql_cmd_create_table::execute
    percona#12 mysql_execute_command
    percona#13 dispatch_sql_command

    Applier thread
    --------------
    #1  ___pthread_mutex_lock
    #2  native_mutex_lock
    #3  safe_mutex_lock
    #4  Gtid_state::update_gtids_impl_lock_sidnos               <= waits for sidno lock
    percona#5  Gtid_state::update_commit_group
    percona#6  Commit_order_manager::flush_engine_and_signal_threads   <= acquires commit lock here
    percona#7  Commit_order_manager::finish
    percona#8  Commit_order_manager::wait_and_finish
    percona#9  ha_commit_low
    percona#10 trx_coordinator::commit_in_engines
    percona#11 MYSQL_BIN_LOG::commit
    percona#12 ha_commit_trans
    percona#13 trans_commit
    percona#14 Xid_log_event::do_commit
    percona#15 Xid_apply_log_event::do_apply_event_worker
    percona#16 Slave_worker::slave_worker_exec_event
    percona#17 slave_worker_exec_job_group
    percona#18 handle_slave_worker

14. If the applier thread continues without releasing the lock, then at a later
    stage, it can perform recursive locking while setting the GTID for the next
    transaction (in set_gtid_next()).

    In debug builds the above case hits the assertion
    `safe_mutex_assert_not_owner()` meaning the lock is already acquired by the
    replica applier thread when it tries to re-acquire the lock.

Solution
--------
In the above problematic example, when seen from each thread
individually, we can conclude that there is no problem in the order of lock
acquisition, thus there is no need to change the lock order.

However, the root cause for this problem is that multiple threads can
concurrently access to the array `Gtid_state::commit_group_sidnos`.

In its initial implementation, it was expected that threads should
hold the `MYSQL_BIN_LOG::LOCK_commit` before modifying its contents. But it
was not considered when upstream implemented WL#7846 (MTS:
slave-preserve-commit-order when log-slave-updates/binlog is disabled).

With this patch, we now ensure that `MYSQL_BIN_LOG::LOCK_commit` is acquired
when the client thread (binlog flush leader) when it tries to perform GTID
update on behalf of threads waiting in "Commit Order" queue, thus providing a
guarantee that `Gtid_state::commit_group_sidnos` array is never accessed
without the protection of `MYSQL_BIN_LOG::LOCK_commit`.
VarunNagaraju pushed a commit that referenced this pull request May 22, 2024
Upstream commit ID : fb-mysql-5.6.35/8cb1dc836b68f1f13e8b2655b2b8cb2d57f400b3
PS-5217 : Merge fb-prod201803

Summary:
Original report: https://jira.mariadb.org/browse/MDEV-15816

To reproduce this bug just following below steps,

client 1:
USE test;
CREATE TABLE t1 (i INT) ENGINE=MyISAM;
HANDLER t1 OPEN h;
CREATE TABLE t2 (i INT) ENGINE=RocksDB;
LOCK TABLES t2 WRITE;

client 2:
FLUSH TABLES WITH READ LOCK;

client 1:
INSERT INTO t2 VALUES (1);

So client 1 acquired the lock and set m_lock_rows = RDB_LOCK_WRITE.
Then client 2 calls store_lock(TL_IGNORE) and m_lock_rows was wrongly
set to RDB_LOCK_NONE, as below

```
 #0  myrocks::ha_rocksdb::store_lock (this=0x7fffbc03c7c8, thd=0x7fffc0000ba0, to=0x7fffc0011220, lock_type=TL_IGNORE)
 #1  get_lock_data (thd=0x7fffc0000ba0, table_ptr=0x7fffe84b7d20, count=1, flags=2)
 #2  mysql_lock_abort_for_thread (thd=0x7fffc0000ba0, table=0x7fffbc03bbc0)
 #3  THD::notify_shared_lock (this=0x7fffc0000ba0, ctx_in_use=0x7fffbc000bd8, needs_thr_lock_abort=true)
 #4  MDL_lock::notify_conflicting_locks (this=0x555557a82380, ctx=0x7fffc0000cc8)
 percona#5  MDL_context::acquire_lock (this=0x7fffc0000cc8, mdl_request=0x7fffe84b8350, lock_wait_timeout=2)
 percona#6  Global_read_lock::lock_global_read_lock (this=0x7fffc0003fe0, thd=0x7fffc0000ba0)
```

Finally, client 1 "INSERT INTO..." hits the Assertion 'm_lock_rows == RDB_LOCK_WRITE'
failed in myrocks::ha_rocksdb::write_row()

Fix this bug by not setting m_locks_rows if lock_type == TL_IGNORE.

Closes facebook/mysql-5.6#838
Pull Request resolved: facebook/mysql-5.6#871

Differential Revision: D9417382

Pulled By: lth

fbshipit-source-id: c36c164e06c
VarunNagaraju pushed a commit that referenced this pull request May 22, 2024
PS-5741: Incorrect use of memset_s in keyring_vault.

Fixed the usage of memset_s. The arguments should be:
void memset_s(void *dest, size_t dest_max, int c, size_t n)
where the 2nd argument is size of buffer and the 3rd is
argument is character to fill.

---------------------------------------------------------------------------

PS-7769 - Fix use-after-return error in audit_log_exclude_accounts_validate

---

*Problem:*

`st_mysql_value::val_str` might return a pointer to `buf` which after
the function called is deleted. Therefore the value in `save`, after
reuturnin from the function, is invalid.

In this particular case, the error is not manifesting as val_str`
returns memory allocated with `thd_strmake` and it does not use `buf`.

*Solution:*

Allocate memory with `thd_strmake` so the memory in `save` is not local.

---------------------------------------------------------------------------

Fix test main.bug12969156 when WITH_ASAN=ON

*Problem:*

ASAN complains about stack-buffer-overflow on function `mysql_heartbeat`:

```
==90890==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7fe746d06d14 at pc 0x7fe760f5b017 bp 0x7fe746d06cd0 sp 0x7fe746d06478
WRITE of size 24 at 0x7fe746d06d14 thread T16777215

Address 0x7fe746d06d14 is located in stack of thread T26 at offset 340 in frame
    #0 0x7fe746d0a55c in mysql_heartbeat(void*) /home/yura/ws/percona-server/plugin/daemon_example/daemon_example.cc:62

  This frame has 4 object(s):
    [48, 56) 'result' (line 66)
    [80, 112) '_db_stack_frame_' (line 63)
    [144, 200) 'tm_tmp' (line 67)
    [240, 340) 'buffer' (line 65) <== Memory access at offset 340 overflows this variable
HINT: this may be a false positive if your program uses some custom stack unwind mechanism, swapcontext or vfork
      (longjmp and C++ exceptions *are* supported)
Thread T26 created by T25 here:
    #0 0x7fe760f5f6d5 in __interceptor_pthread_create ../../../../src/libsanitizer/asan/asan_interceptors.cpp:216
    #1 0x557ccbbcb857 in my_thread_create /home/yura/ws/percona-server/mysys/my_thread.c:104
    #2 0x7fe746d0b21a in daemon_example_plugin_init /home/yura/ws/percona-server/plugin/daemon_example/daemon_example.cc:148
    #3 0x557ccb4c69c7 in plugin_initialize /home/yura/ws/percona-server/sql/sql_plugin.cc:1279
    #4 0x557ccb4d19cd in mysql_install_plugin /home/yura/ws/percona-server/sql/sql_plugin.cc:2279
    percona#5 0x557ccb4d218f in Sql_cmd_install_plugin::execute(THD*) /home/yura/ws/percona-server/sql/sql_plugin.cc:4664
    percona#6 0x557ccb47695e in mysql_execute_command(THD*, bool) /home/yura/ws/percona-server/sql/sql_parse.cc:5160
    percona#7 0x557ccb47977c in mysql_parse(THD*, Parser_state*, bool) /home/yura/ws/percona-server/sql/sql_parse.cc:5952
    percona#8 0x557ccb47b6c2 in dispatch_command(THD*, COM_DATA const*, enum_server_command) /home/yura/ws/percona-server/sql/sql_parse.cc:1544
    percona#9 0x557ccb47de1d in do_command(THD*) /home/yura/ws/percona-server/sql/sql_parse.cc:1065
    percona#10 0x557ccb6ac294 in handle_connection /home/yura/ws/percona-server/sql/conn_handler/connection_handler_per_thread.cc:325
    percona#11 0x557ccbbfabb0 in pfs_spawn_thread /home/yura/ws/percona-server/storage/perfschema/pfs.cc:2198
    percona#12 0x7fe760ab544f in start_thread nptl/pthread_create.c:473
```

The reason is that `my_thread_cancel` is used to finish the daemon thread. This is not and orderly way of finishing the thread. ASAN does not register the stack variables are not used anymore which generates the error above.

This is a benign error as all the variables are on the stack.

*Solution*:

Finish the thread in orderly way by using a signalling variable.

---------------------------------------------------------------------------

PS-8204: Fix XML escape rules for audit plugin

https://jira.percona.com/browse/PS-8204

There was a wrong length specified for some XML
escape rules. As a result of this terminating null symbol from
replacement rule was copied into resulting string. This lead to
quer text truncation in audit log file.
In addition added empty replacement rules for '\b' and 'f' symbols
which just remove them from resulting string. These symboles are
not supported in XML 1.0.

---------------------------------------------------------------------------

PS-8854: Add main.percona_udf MTR test

Add a test to check FNV1A_64, FNV_64, and MURMUR_HASH user-defined functions.
VarunNagaraju pushed a commit that referenced this pull request May 22, 2024
…n read() syscall over network

https://jira.percona.com/browse/PS-8592

Description
-----------
GR suffered from problems caused by the security probes and network scanner
processes connecting to the group replication communication port. This usually
is not a problem, but poses a serious threat when another member tries to join
the cluster by initialting a connection to the member which is affected by
external processes using the port dedicated for group communication for longer
durations.

On such activites by external processes, the SSL enabled server stalled forever
on the SSL_accept() call waiting for handshake data. Below is the stacktrace:

    Thread 55 (Thread 0x7f7bb77ff700 (LWP 2198598)):
    #0 in read ()
    #1 in sock_read ()
    #2 in BIO_read ()
    #3 in ssl23_read_bytes ()
    #4 in ssl23_get_client_hello ()
    percona#5 in ssl23_accept ()
    percona#6 in xcom_tcp_server_startup(Xcom_network_provider*) ()

When the server stalled in the above path forever, it prohibited other members
to join the cluster resulting in the following messages on the joiner server's
logs.

    [ERROR] [MY-011640] [Repl] Plugin group_replication reported: 'Timeout on wait for view after joining group'
    [ERROR] [MY-011735] [Repl] Plugin group_replication reported: '[GCS] The member is already leaving or joining a group.'

Solution
--------
This patch adds two new variables

1. group_replication_xcom_ssl_socket_timeout

   It is a file-descriptor level timeout in seconds for both accept() and
   SSL_accept() calls when group replication is listening on the xcom port.
   When set to a valid value, say for example 5 seconds, both accept() and
   SSL_accept() return after 5 seconds. The default value has been set to 0
   (waits infinitely) for backward compatibility. This variable is effective
   only when GR is configred with SSL.

2. group_replication_xcom_ssl_accept_retries

   It defines the number of retries to be performed before closing the socket.
   For each retry the server thread calls SSL_accept()  with timeout defined by
   the group_replication_xcom_ssl_socket_timeout for the SSL handshake process
   once the connection has been accepted by the first accept() call. The
   default value has been set to 10. This variable is effective only when GR is
   configred with SSL.

Note:
- Both of the above variables are dynamically configurable, but will become
  effective only on START GROUP_REPLICATION.

-------------------------------------------------------------------------------

PS-8844: Fix the failing main.mysqldump_gtid_purged

https://jira.percona.com/browse/PS-8844

This patch fixes the test failure of main.mysqldump_gtid_purged that
failed due to the uninitialized variable $redirect_stderr in the
start_proc_in_background.inc.
VarunNagaraju pushed a commit that referenced this pull request May 29, 2024
…ocal DDL

         executed

https://perconadev.atlassian.net/browse/PS-9018

Problem
-------
In high concurrency scenarios, MySQL replica can enter into a deadlock due to a
race condition between the replica applier thread and the client thread
performing a binlog group commit.

Analysis
--------
It needs at least 3 threads for this deadlock to happen

1. One client thread
2. Two replica applier threads

How this deadlock happens?
--------------------------
0. Binlog is enabled on replica, but log_replica_updates is disabled.

1. Initially, both "Commit Order" and "Binlog Flush" queues are empty.

2. Replica applier thread 1 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

3. Since both "Commit Order" and "Binlog Flush" queues are empty, the applier
   thread 1

   3.1. Becomes leader (In Commit_stage_manager::enroll_for()).

   3.2. Registers in the commit order queue.

   3.3. Acquires the lock MYSQL_BIN_LOG::LOCK_log.

   3.4. Commit Order queue is emptied, but the lock MYSQL_BIN_LOG::LOCK_log is
        not yet released.

   NOTE: SE commit for applier thread is already done by the time it reaches
         here.

4. Replica applier thread 2 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

5. Since the "Commit Order" queue is empty (emptied by applier thread 1 in 3.4), the
   applier thread 2

   5.1. Becomes leader (In Commit_stage_manager::enroll_for())

   5.2. Registers in the commit order queue.

   5.3. Tries to acquire the lock MYSQL_BIN_LOG::LOCK_log. Since it is held by applier
        thread 1 it will wait until the lock is released.

6. Client thread enters the group commit pipeline to register in the
   "Binlog Flush" queue.

7. Since "Commit Order" queue is not empty (there is applier thread 2 in the
   queue), it enters the conditional wait `m_stage_cond_leader` with an
   intention to become the leader for both the "Binlog Flush" and
   "Commit Order" queues.

8. Applier thread 1 releases the lock MYSQL_BIN_LOG::LOCK_log and proceeds to update
   the GTID by calling gtid_state->update_commit_group() from
   Commit_order_manager::flush_engine_and_signal_threads().

9. Applier thread 2 acquires the lock MYSQL_BIN_LOG::LOCK_log.

   9.1. It checks if there is any thread waiting in the "Binlog Flush" queue
        to become the leader. Here it finds the client thread waiting to be
        the leader.

   9.2. It releases the lock MYSQL_BIN_LOG::LOCK_log and signals on the
        cond_var `m_stage_cond_leader` and enters a conditional wait until the
        thread's `tx_commit_pending` is set to false by the client thread
       (will be done in the
       Commit_stage_manager::process_final_stage_for_ordered_commit_group()
       called by client thread from fetch_and_process_flush_stage_queue()).

10. The client thread wakes up from the cond_var `m_stage_cond_leader`.  The
    thread has now become a leader and it is its responsibility to update GTID
    of applier thread 2.

    10.1. It acquires the lock MYSQL_BIN_LOG::LOCK_log.

    10.2. Returns from `enroll_for()` and proceeds to process the
          "Commit Order" and "Binlog Flush" queues.

    10.3. Fetches the "Commit Order" and "Binlog Flush" queues.

    10.4. Performs the storage engine flush by calling ha_flush_logs() from
          fetch_and_process_flush_stage_queue().

    10.5. Proceeds to update the GTID of threads in "Commit Order" queue by
          calling gtid_state->update_commit_group() from
          Commit_stage_manager::process_final_stage_for_ordered_commit_group().

11. At this point, we will have

    - Client thread performing GTID update on behalf if applier thread 2 (from step 10.5), and
    - Applier thread 1 performing GTID update for itself (from step 8).

    Due to the lack of proper synchronization between the above two threads,
    there exists a time window where both threads can call
    gtid_state->update_commit_group() concurrently.

    In subsequent steps, both threads simultaneously try to modify the contents
    of the array `commit_group_sidnos` which is used to track the lock status of
    sidnos. This concurrent access to `update_commit_group()` can cause a
    lock-leak resulting in one thread acquiring the sidno lock and not
    releasing at all.

-----------------------------------------------------------------------------------------------------------
Client thread                                           Applier Thread 1
-----------------------------------------------------------------------------------------------------------
update_commit_group() => global_sid_lock->rdlock();     update_commit_group() => global_sid_lock->rdlock();

calls update_gtids_impl_lock_sidnos()                   calls update_gtids_impl_lock_sidnos()

set commit_group_sidno[2] = true                        set commit_group_sidno[2] = true

                                                        lock_sidno(2) -> successful

lock_sidno(2) -> waits

                                                        update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

                                                        if (commit_group_sidnos[2]) {
                                                          unlock_sidno(2);
                                                          commit_group_sidnos[2] = false;
                                                        }

                                                        Applier thread continues..

lock_sidno(2) -> successful

update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

if (commit_group_sidnos[2]) { <=== this check fails and lock is not released.
  unlock_sidno(2);
  commit_group_sidnos[2] = false;
}

Client thread continues without releasing the lock
-----------------------------------------------------------------------------------------------------------

12. As the above lock-leak can also happen the other way i.e, the applier
    thread fails to unlock, there can be different consequences hereafter.

13. If the client thread continues without releasing the lock, then at a later
    stage, it can enter into a deadlock with the applier thread performing a
    GTID update with stack trace.

    Client_thread
    -------------
    #1  __GI___lll_lock_wait
    #2  ___pthread_mutex_lock
    #3  native_mutex_lock                                       <= waits for commit lock while holding sidno lock
    #4  Commit_stage_manager::enroll_for
    percona#5  MYSQL_BIN_LOG::change_stage
    percona#6  MYSQL_BIN_LOG::ordered_commit
    percona#7  MYSQL_BIN_LOG::commit
    percona#8  ha_commit_trans
    percona#9  trans_commit_implicit
    percona#10 mysql_create_like_table
    percona#11 Sql_cmd_create_table::execute
    percona#12 mysql_execute_command
    percona#13 dispatch_sql_command

    Applier thread
    --------------
    #1  ___pthread_mutex_lock
    #2  native_mutex_lock
    #3  safe_mutex_lock
    #4  Gtid_state::update_gtids_impl_lock_sidnos               <= waits for sidno lock
    percona#5  Gtid_state::update_commit_group
    percona#6  Commit_order_manager::flush_engine_and_signal_threads   <= acquires commit lock here
    percona#7  Commit_order_manager::finish
    percona#8  Commit_order_manager::wait_and_finish
    percona#9  ha_commit_low
    percona#10 trx_coordinator::commit_in_engines
    percona#11 MYSQL_BIN_LOG::commit
    percona#12 ha_commit_trans
    percona#13 trans_commit
    percona#14 Xid_log_event::do_commit
    percona#15 Xid_apply_log_event::do_apply_event_worker
    percona#16 Slave_worker::slave_worker_exec_event
    percona#17 slave_worker_exec_job_group
    percona#18 handle_slave_worker

14. If the applier thread continues without releasing the lock, then at a later
    stage, it can perform recursive locking while setting the GTID for the next
    transaction (in set_gtid_next()).

    In debug builds the above case hits the assertion
    `safe_mutex_assert_not_owner()` meaning the lock is already acquired by the
    replica applier thread when it tries to re-acquire the lock.

Solution
--------
In the above problematic example, when seen from each thread
individually, we can conclude that there is no problem in the order of lock
acquisition, thus there is no need to change the lock order.

However, the root cause for this problem is that multiple threads can
concurrently access to the array `Gtid_state::commit_group_sidnos`.

In its initial implementation, it was expected that threads should
hold the `MYSQL_BIN_LOG::LOCK_commit` before modifying its contents. But it
was not considered when upstream implemented WL#7846 (MTS:
slave-preserve-commit-order when log-slave-updates/binlog is disabled).

With this patch, we now ensure that `MYSQL_BIN_LOG::LOCK_commit` is acquired
when the client thread (binlog flush leader) when it tries to perform GTID
update on behalf of threads waiting in "Commit Order" queue, thus providing a
guarantee that `Gtid_state::commit_group_sidnos` array is never accessed
without the protection of `MYSQL_BIN_LOG::LOCK_commit`.
VarunNagaraju pushed a commit that referenced this pull request May 31, 2024
Upstream commit ID : fb-mysql-5.6.35/8cb1dc836b68f1f13e8b2655b2b8cb2d57f400b3
PS-5217 : Merge fb-prod201803

Summary:
Original report: https://jira.mariadb.org/browse/MDEV-15816

To reproduce this bug just following below steps,

client 1:
USE test;
CREATE TABLE t1 (i INT) ENGINE=MyISAM;
HANDLER t1 OPEN h;
CREATE TABLE t2 (i INT) ENGINE=RocksDB;
LOCK TABLES t2 WRITE;

client 2:
FLUSH TABLES WITH READ LOCK;

client 1:
INSERT INTO t2 VALUES (1);

So client 1 acquired the lock and set m_lock_rows = RDB_LOCK_WRITE.
Then client 2 calls store_lock(TL_IGNORE) and m_lock_rows was wrongly
set to RDB_LOCK_NONE, as below

```
 #0  myrocks::ha_rocksdb::store_lock (this=0x7fffbc03c7c8, thd=0x7fffc0000ba0, to=0x7fffc0011220, lock_type=TL_IGNORE)
 #1  get_lock_data (thd=0x7fffc0000ba0, table_ptr=0x7fffe84b7d20, count=1, flags=2)
 #2  mysql_lock_abort_for_thread (thd=0x7fffc0000ba0, table=0x7fffbc03bbc0)
 #3  THD::notify_shared_lock (this=0x7fffc0000ba0, ctx_in_use=0x7fffbc000bd8, needs_thr_lock_abort=true)
 #4  MDL_lock::notify_conflicting_locks (this=0x555557a82380, ctx=0x7fffc0000cc8)
 percona#5  MDL_context::acquire_lock (this=0x7fffc0000cc8, mdl_request=0x7fffe84b8350, lock_wait_timeout=2)
 percona#6  Global_read_lock::lock_global_read_lock (this=0x7fffc0003fe0, thd=0x7fffc0000ba0)
```

Finally, client 1 "INSERT INTO..." hits the Assertion 'm_lock_rows == RDB_LOCK_WRITE'
failed in myrocks::ha_rocksdb::write_row()

Fix this bug by not setting m_locks_rows if lock_type == TL_IGNORE.

Closes facebook/mysql-5.6#838
Pull Request resolved: facebook/mysql-5.6#871

Differential Revision: D9417382

Pulled By: lth

fbshipit-source-id: c36c164e06c
VarunNagaraju pushed a commit that referenced this pull request May 31, 2024
PS-5741: Incorrect use of memset_s in keyring_vault.

Fixed the usage of memset_s. The arguments should be:
void memset_s(void *dest, size_t dest_max, int c, size_t n)
where the 2nd argument is size of buffer and the 3rd is
argument is character to fill.

---------------------------------------------------------------------------

PS-7769 - Fix use-after-return error in audit_log_exclude_accounts_validate

---

*Problem:*

`st_mysql_value::val_str` might return a pointer to `buf` which after
the function called is deleted. Therefore the value in `save`, after
reuturnin from the function, is invalid.

In this particular case, the error is not manifesting as val_str`
returns memory allocated with `thd_strmake` and it does not use `buf`.

*Solution:*

Allocate memory with `thd_strmake` so the memory in `save` is not local.

---------------------------------------------------------------------------

Fix test main.bug12969156 when WITH_ASAN=ON

*Problem:*

ASAN complains about stack-buffer-overflow on function `mysql_heartbeat`:

```
==90890==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7fe746d06d14 at pc 0x7fe760f5b017 bp 0x7fe746d06cd0 sp 0x7fe746d06478
WRITE of size 24 at 0x7fe746d06d14 thread T16777215

Address 0x7fe746d06d14 is located in stack of thread T26 at offset 340 in frame
    #0 0x7fe746d0a55c in mysql_heartbeat(void*) /home/yura/ws/percona-server/plugin/daemon_example/daemon_example.cc:62

  This frame has 4 object(s):
    [48, 56) 'result' (line 66)
    [80, 112) '_db_stack_frame_' (line 63)
    [144, 200) 'tm_tmp' (line 67)
    [240, 340) 'buffer' (line 65) <== Memory access at offset 340 overflows this variable
HINT: this may be a false positive if your program uses some custom stack unwind mechanism, swapcontext or vfork
      (longjmp and C++ exceptions *are* supported)
Thread T26 created by T25 here:
    #0 0x7fe760f5f6d5 in __interceptor_pthread_create ../../../../src/libsanitizer/asan/asan_interceptors.cpp:216
    #1 0x557ccbbcb857 in my_thread_create /home/yura/ws/percona-server/mysys/my_thread.c:104
    #2 0x7fe746d0b21a in daemon_example_plugin_init /home/yura/ws/percona-server/plugin/daemon_example/daemon_example.cc:148
    #3 0x557ccb4c69c7 in plugin_initialize /home/yura/ws/percona-server/sql/sql_plugin.cc:1279
    #4 0x557ccb4d19cd in mysql_install_plugin /home/yura/ws/percona-server/sql/sql_plugin.cc:2279
    percona#5 0x557ccb4d218f in Sql_cmd_install_plugin::execute(THD*) /home/yura/ws/percona-server/sql/sql_plugin.cc:4664
    percona#6 0x557ccb47695e in mysql_execute_command(THD*, bool) /home/yura/ws/percona-server/sql/sql_parse.cc:5160
    percona#7 0x557ccb47977c in mysql_parse(THD*, Parser_state*, bool) /home/yura/ws/percona-server/sql/sql_parse.cc:5952
    percona#8 0x557ccb47b6c2 in dispatch_command(THD*, COM_DATA const*, enum_server_command) /home/yura/ws/percona-server/sql/sql_parse.cc:1544
    percona#9 0x557ccb47de1d in do_command(THD*) /home/yura/ws/percona-server/sql/sql_parse.cc:1065
    percona#10 0x557ccb6ac294 in handle_connection /home/yura/ws/percona-server/sql/conn_handler/connection_handler_per_thread.cc:325
    percona#11 0x557ccbbfabb0 in pfs_spawn_thread /home/yura/ws/percona-server/storage/perfschema/pfs.cc:2198
    percona#12 0x7fe760ab544f in start_thread nptl/pthread_create.c:473
```

The reason is that `my_thread_cancel` is used to finish the daemon thread. This is not and orderly way of finishing the thread. ASAN does not register the stack variables are not used anymore which generates the error above.

This is a benign error as all the variables are on the stack.

*Solution*:

Finish the thread in orderly way by using a signalling variable.

---------------------------------------------------------------------------

PS-8204: Fix XML escape rules for audit plugin

https://jira.percona.com/browse/PS-8204

There was a wrong length specified for some XML
escape rules. As a result of this terminating null symbol from
replacement rule was copied into resulting string. This lead to
quer text truncation in audit log file.
In addition added empty replacement rules for '\b' and 'f' symbols
which just remove them from resulting string. These symboles are
not supported in XML 1.0.

---------------------------------------------------------------------------

PS-8854: Add main.percona_udf MTR test

Add a test to check FNV1A_64, FNV_64, and MURMUR_HASH user-defined functions.
VarunNagaraju pushed a commit that referenced this pull request May 31, 2024
…n read() syscall over network

https://jira.percona.com/browse/PS-8592

Description
-----------
GR suffered from problems caused by the security probes and network scanner
processes connecting to the group replication communication port. This usually
is not a problem, but poses a serious threat when another member tries to join
the cluster by initialting a connection to the member which is affected by
external processes using the port dedicated for group communication for longer
durations.

On such activites by external processes, the SSL enabled server stalled forever
on the SSL_accept() call waiting for handshake data. Below is the stacktrace:

    Thread 55 (Thread 0x7f7bb77ff700 (LWP 2198598)):
    #0 in read ()
    #1 in sock_read ()
    #2 in BIO_read ()
    #3 in ssl23_read_bytes ()
    #4 in ssl23_get_client_hello ()
    percona#5 in ssl23_accept ()
    percona#6 in xcom_tcp_server_startup(Xcom_network_provider*) ()

When the server stalled in the above path forever, it prohibited other members
to join the cluster resulting in the following messages on the joiner server's
logs.

    [ERROR] [MY-011640] [Repl] Plugin group_replication reported: 'Timeout on wait for view after joining group'
    [ERROR] [MY-011735] [Repl] Plugin group_replication reported: '[GCS] The member is already leaving or joining a group.'

Solution
--------
This patch adds two new variables

1. group_replication_xcom_ssl_socket_timeout

   It is a file-descriptor level timeout in seconds for both accept() and
   SSL_accept() calls when group replication is listening on the xcom port.
   When set to a valid value, say for example 5 seconds, both accept() and
   SSL_accept() return after 5 seconds. The default value has been set to 0
   (waits infinitely) for backward compatibility. This variable is effective
   only when GR is configred with SSL.

2. group_replication_xcom_ssl_accept_retries

   It defines the number of retries to be performed before closing the socket.
   For each retry the server thread calls SSL_accept()  with timeout defined by
   the group_replication_xcom_ssl_socket_timeout for the SSL handshake process
   once the connection has been accepted by the first accept() call. The
   default value has been set to 10. This variable is effective only when GR is
   configred with SSL.

Note:
- Both of the above variables are dynamically configurable, but will become
  effective only on START GROUP_REPLICATION.

-------------------------------------------------------------------------------

PS-8844: Fix the failing main.mysqldump_gtid_purged

https://jira.percona.com/browse/PS-8844

This patch fixes the test failure of main.mysqldump_gtid_purged that
failed due to the uninitialized variable $redirect_stderr in the
start_proc_in_background.inc.
VarunNagaraju pushed a commit that referenced this pull request May 31, 2024
…ocal DDL

         executed

https://perconadev.atlassian.net/browse/PS-9018

Problem
-------
In high concurrency scenarios, MySQL replica can enter into a deadlock due to a
race condition between the replica applier thread and the client thread
performing a binlog group commit.

Analysis
--------
It needs at least 3 threads for this deadlock to happen

1. One client thread
2. Two replica applier threads

How this deadlock happens?
--------------------------
0. Binlog is enabled on replica, but log_replica_updates is disabled.

1. Initially, both "Commit Order" and "Binlog Flush" queues are empty.

2. Replica applier thread 1 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

3. Since both "Commit Order" and "Binlog Flush" queues are empty, the applier
   thread 1

   3.1. Becomes leader (In Commit_stage_manager::enroll_for()).

   3.2. Registers in the commit order queue.

   3.3. Acquires the lock MYSQL_BIN_LOG::LOCK_log.

   3.4. Commit Order queue is emptied, but the lock MYSQL_BIN_LOG::LOCK_log is
        not yet released.

   NOTE: SE commit for applier thread is already done by the time it reaches
         here.

4. Replica applier thread 2 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

5. Since the "Commit Order" queue is empty (emptied by applier thread 1 in 3.4), the
   applier thread 2

   5.1. Becomes leader (In Commit_stage_manager::enroll_for())

   5.2. Registers in the commit order queue.

   5.3. Tries to acquire the lock MYSQL_BIN_LOG::LOCK_log. Since it is held by applier
        thread 1 it will wait until the lock is released.

6. Client thread enters the group commit pipeline to register in the
   "Binlog Flush" queue.

7. Since "Commit Order" queue is not empty (there is applier thread 2 in the
   queue), it enters the conditional wait `m_stage_cond_leader` with an
   intention to become the leader for both the "Binlog Flush" and
   "Commit Order" queues.

8. Applier thread 1 releases the lock MYSQL_BIN_LOG::LOCK_log and proceeds to update
   the GTID by calling gtid_state->update_commit_group() from
   Commit_order_manager::flush_engine_and_signal_threads().

9. Applier thread 2 acquires the lock MYSQL_BIN_LOG::LOCK_log.

   9.1. It checks if there is any thread waiting in the "Binlog Flush" queue
        to become the leader. Here it finds the client thread waiting to be
        the leader.

   9.2. It releases the lock MYSQL_BIN_LOG::LOCK_log and signals on the
        cond_var `m_stage_cond_leader` and enters a conditional wait until the
        thread's `tx_commit_pending` is set to false by the client thread
       (will be done in the
       Commit_stage_manager::process_final_stage_for_ordered_commit_group()
       called by client thread from fetch_and_process_flush_stage_queue()).

10. The client thread wakes up from the cond_var `m_stage_cond_leader`.  The
    thread has now become a leader and it is its responsibility to update GTID
    of applier thread 2.

    10.1. It acquires the lock MYSQL_BIN_LOG::LOCK_log.

    10.2. Returns from `enroll_for()` and proceeds to process the
          "Commit Order" and "Binlog Flush" queues.

    10.3. Fetches the "Commit Order" and "Binlog Flush" queues.

    10.4. Performs the storage engine flush by calling ha_flush_logs() from
          fetch_and_process_flush_stage_queue().

    10.5. Proceeds to update the GTID of threads in "Commit Order" queue by
          calling gtid_state->update_commit_group() from
          Commit_stage_manager::process_final_stage_for_ordered_commit_group().

11. At this point, we will have

    - Client thread performing GTID update on behalf if applier thread 2 (from step 10.5), and
    - Applier thread 1 performing GTID update for itself (from step 8).

    Due to the lack of proper synchronization between the above two threads,
    there exists a time window where both threads can call
    gtid_state->update_commit_group() concurrently.

    In subsequent steps, both threads simultaneously try to modify the contents
    of the array `commit_group_sidnos` which is used to track the lock status of
    sidnos. This concurrent access to `update_commit_group()` can cause a
    lock-leak resulting in one thread acquiring the sidno lock and not
    releasing at all.

-----------------------------------------------------------------------------------------------------------
Client thread                                           Applier Thread 1
-----------------------------------------------------------------------------------------------------------
update_commit_group() => global_sid_lock->rdlock();     update_commit_group() => global_sid_lock->rdlock();

calls update_gtids_impl_lock_sidnos()                   calls update_gtids_impl_lock_sidnos()

set commit_group_sidno[2] = true                        set commit_group_sidno[2] = true

                                                        lock_sidno(2) -> successful

lock_sidno(2) -> waits

                                                        update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

                                                        if (commit_group_sidnos[2]) {
                                                          unlock_sidno(2);
                                                          commit_group_sidnos[2] = false;
                                                        }

                                                        Applier thread continues..

lock_sidno(2) -> successful

update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

if (commit_group_sidnos[2]) { <=== this check fails and lock is not released.
  unlock_sidno(2);
  commit_group_sidnos[2] = false;
}

Client thread continues without releasing the lock
-----------------------------------------------------------------------------------------------------------

12. As the above lock-leak can also happen the other way i.e, the applier
    thread fails to unlock, there can be different consequences hereafter.

13. If the client thread continues without releasing the lock, then at a later
    stage, it can enter into a deadlock with the applier thread performing a
    GTID update with stack trace.

    Client_thread
    -------------
    #1  __GI___lll_lock_wait
    #2  ___pthread_mutex_lock
    #3  native_mutex_lock                                       <= waits for commit lock while holding sidno lock
    #4  Commit_stage_manager::enroll_for
    percona#5  MYSQL_BIN_LOG::change_stage
    percona#6  MYSQL_BIN_LOG::ordered_commit
    percona#7  MYSQL_BIN_LOG::commit
    percona#8  ha_commit_trans
    percona#9  trans_commit_implicit
    percona#10 mysql_create_like_table
    percona#11 Sql_cmd_create_table::execute
    percona#12 mysql_execute_command
    percona#13 dispatch_sql_command

    Applier thread
    --------------
    #1  ___pthread_mutex_lock
    #2  native_mutex_lock
    #3  safe_mutex_lock
    #4  Gtid_state::update_gtids_impl_lock_sidnos               <= waits for sidno lock
    percona#5  Gtid_state::update_commit_group
    percona#6  Commit_order_manager::flush_engine_and_signal_threads   <= acquires commit lock here
    percona#7  Commit_order_manager::finish
    percona#8  Commit_order_manager::wait_and_finish
    percona#9  ha_commit_low
    percona#10 trx_coordinator::commit_in_engines
    percona#11 MYSQL_BIN_LOG::commit
    percona#12 ha_commit_trans
    percona#13 trans_commit
    percona#14 Xid_log_event::do_commit
    percona#15 Xid_apply_log_event::do_apply_event_worker
    percona#16 Slave_worker::slave_worker_exec_event
    percona#17 slave_worker_exec_job_group
    percona#18 handle_slave_worker

14. If the applier thread continues without releasing the lock, then at a later
    stage, it can perform recursive locking while setting the GTID for the next
    transaction (in set_gtid_next()).

    In debug builds the above case hits the assertion
    `safe_mutex_assert_not_owner()` meaning the lock is already acquired by the
    replica applier thread when it tries to re-acquire the lock.

Solution
--------
In the above problematic example, when seen from each thread
individually, we can conclude that there is no problem in the order of lock
acquisition, thus there is no need to change the lock order.

However, the root cause for this problem is that multiple threads can
concurrently access to the array `Gtid_state::commit_group_sidnos`.

In its initial implementation, it was expected that threads should
hold the `MYSQL_BIN_LOG::LOCK_commit` before modifying its contents. But it
was not considered when upstream implemented WL#7846 (MTS:
slave-preserve-commit-order when log-slave-updates/binlog is disabled).

With this patch, we now ensure that `MYSQL_BIN_LOG::LOCK_commit` is acquired
when the client thread (binlog flush leader) when it tries to perform GTID
update on behalf of threads waiting in "Commit Order" queue, thus providing a
guarantee that `Gtid_state::commit_group_sidnos` array is never accessed
without the protection of `MYSQL_BIN_LOG::LOCK_commit`.
VarunNagaraju pushed a commit that referenced this pull request Jun 5, 2024
Upstream commit ID : fb-mysql-5.6.35/8cb1dc836b68f1f13e8b2655b2b8cb2d57f400b3
PS-5217 : Merge fb-prod201803

Summary:
Original report: https://jira.mariadb.org/browse/MDEV-15816

To reproduce this bug just following below steps,

client 1:
USE test;
CREATE TABLE t1 (i INT) ENGINE=MyISAM;
HANDLER t1 OPEN h;
CREATE TABLE t2 (i INT) ENGINE=RocksDB;
LOCK TABLES t2 WRITE;

client 2:
FLUSH TABLES WITH READ LOCK;

client 1:
INSERT INTO t2 VALUES (1);

So client 1 acquired the lock and set m_lock_rows = RDB_LOCK_WRITE.
Then client 2 calls store_lock(TL_IGNORE) and m_lock_rows was wrongly
set to RDB_LOCK_NONE, as below

```
 #0  myrocks::ha_rocksdb::store_lock (this=0x7fffbc03c7c8, thd=0x7fffc0000ba0, to=0x7fffc0011220, lock_type=TL_IGNORE)
 #1  get_lock_data (thd=0x7fffc0000ba0, table_ptr=0x7fffe84b7d20, count=1, flags=2)
 #2  mysql_lock_abort_for_thread (thd=0x7fffc0000ba0, table=0x7fffbc03bbc0)
 #3  THD::notify_shared_lock (this=0x7fffc0000ba0, ctx_in_use=0x7fffbc000bd8, needs_thr_lock_abort=true)
 #4  MDL_lock::notify_conflicting_locks (this=0x555557a82380, ctx=0x7fffc0000cc8)
 percona#5  MDL_context::acquire_lock (this=0x7fffc0000cc8, mdl_request=0x7fffe84b8350, lock_wait_timeout=2)
 percona#6  Global_read_lock::lock_global_read_lock (this=0x7fffc0003fe0, thd=0x7fffc0000ba0)
```

Finally, client 1 "INSERT INTO..." hits the Assertion 'm_lock_rows == RDB_LOCK_WRITE'
failed in myrocks::ha_rocksdb::write_row()

Fix this bug by not setting m_locks_rows if lock_type == TL_IGNORE.

Closes facebook/mysql-5.6#838
Pull Request resolved: facebook/mysql-5.6#871

Differential Revision: D9417382

Pulled By: lth

fbshipit-source-id: c36c164e06c
VarunNagaraju pushed a commit that referenced this pull request Jun 5, 2024
PS-5741: Incorrect use of memset_s in keyring_vault.

Fixed the usage of memset_s. The arguments should be:
void memset_s(void *dest, size_t dest_max, int c, size_t n)
where the 2nd argument is size of buffer and the 3rd is
argument is character to fill.

---------------------------------------------------------------------------

PS-7769 - Fix use-after-return error in audit_log_exclude_accounts_validate

---

*Problem:*

`st_mysql_value::val_str` might return a pointer to `buf` which after
the function called is deleted. Therefore the value in `save`, after
reuturnin from the function, is invalid.

In this particular case, the error is not manifesting as val_str`
returns memory allocated with `thd_strmake` and it does not use `buf`.

*Solution:*

Allocate memory with `thd_strmake` so the memory in `save` is not local.

---------------------------------------------------------------------------

Fix test main.bug12969156 when WITH_ASAN=ON

*Problem:*

ASAN complains about stack-buffer-overflow on function `mysql_heartbeat`:

```
==90890==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7fe746d06d14 at pc 0x7fe760f5b017 bp 0x7fe746d06cd0 sp 0x7fe746d06478
WRITE of size 24 at 0x7fe746d06d14 thread T16777215

Address 0x7fe746d06d14 is located in stack of thread T26 at offset 340 in frame
    #0 0x7fe746d0a55c in mysql_heartbeat(void*) /home/yura/ws/percona-server/plugin/daemon_example/daemon_example.cc:62

  This frame has 4 object(s):
    [48, 56) 'result' (line 66)
    [80, 112) '_db_stack_frame_' (line 63)
    [144, 200) 'tm_tmp' (line 67)
    [240, 340) 'buffer' (line 65) <== Memory access at offset 340 overflows this variable
HINT: this may be a false positive if your program uses some custom stack unwind mechanism, swapcontext or vfork
      (longjmp and C++ exceptions *are* supported)
Thread T26 created by T25 here:
    #0 0x7fe760f5f6d5 in __interceptor_pthread_create ../../../../src/libsanitizer/asan/asan_interceptors.cpp:216
    #1 0x557ccbbcb857 in my_thread_create /home/yura/ws/percona-server/mysys/my_thread.c:104
    #2 0x7fe746d0b21a in daemon_example_plugin_init /home/yura/ws/percona-server/plugin/daemon_example/daemon_example.cc:148
    #3 0x557ccb4c69c7 in plugin_initialize /home/yura/ws/percona-server/sql/sql_plugin.cc:1279
    #4 0x557ccb4d19cd in mysql_install_plugin /home/yura/ws/percona-server/sql/sql_plugin.cc:2279
    percona#5 0x557ccb4d218f in Sql_cmd_install_plugin::execute(THD*) /home/yura/ws/percona-server/sql/sql_plugin.cc:4664
    percona#6 0x557ccb47695e in mysql_execute_command(THD*, bool) /home/yura/ws/percona-server/sql/sql_parse.cc:5160
    percona#7 0x557ccb47977c in mysql_parse(THD*, Parser_state*, bool) /home/yura/ws/percona-server/sql/sql_parse.cc:5952
    percona#8 0x557ccb47b6c2 in dispatch_command(THD*, COM_DATA const*, enum_server_command) /home/yura/ws/percona-server/sql/sql_parse.cc:1544
    percona#9 0x557ccb47de1d in do_command(THD*) /home/yura/ws/percona-server/sql/sql_parse.cc:1065
    percona#10 0x557ccb6ac294 in handle_connection /home/yura/ws/percona-server/sql/conn_handler/connection_handler_per_thread.cc:325
    percona#11 0x557ccbbfabb0 in pfs_spawn_thread /home/yura/ws/percona-server/storage/perfschema/pfs.cc:2198
    percona#12 0x7fe760ab544f in start_thread nptl/pthread_create.c:473
```

The reason is that `my_thread_cancel` is used to finish the daemon thread. This is not and orderly way of finishing the thread. ASAN does not register the stack variables are not used anymore which generates the error above.

This is a benign error as all the variables are on the stack.

*Solution*:

Finish the thread in orderly way by using a signalling variable.

---------------------------------------------------------------------------

PS-8204: Fix XML escape rules for audit plugin

https://jira.percona.com/browse/PS-8204

There was a wrong length specified for some XML
escape rules. As a result of this terminating null symbol from
replacement rule was copied into resulting string. This lead to
quer text truncation in audit log file.
In addition added empty replacement rules for '\b' and 'f' symbols
which just remove them from resulting string. These symboles are
not supported in XML 1.0.

---------------------------------------------------------------------------

PS-8854: Add main.percona_udf MTR test

Add a test to check FNV1A_64, FNV_64, and MURMUR_HASH user-defined functions.
VarunNagaraju pushed a commit that referenced this pull request Jun 5, 2024
…n read() syscall over network

https://jira.percona.com/browse/PS-8592

Description
-----------
GR suffered from problems caused by the security probes and network scanner
processes connecting to the group replication communication port. This usually
is not a problem, but poses a serious threat when another member tries to join
the cluster by initialting a connection to the member which is affected by
external processes using the port dedicated for group communication for longer
durations.

On such activites by external processes, the SSL enabled server stalled forever
on the SSL_accept() call waiting for handshake data. Below is the stacktrace:

    Thread 55 (Thread 0x7f7bb77ff700 (LWP 2198598)):
    #0 in read ()
    #1 in sock_read ()
    #2 in BIO_read ()
    #3 in ssl23_read_bytes ()
    #4 in ssl23_get_client_hello ()
    percona#5 in ssl23_accept ()
    percona#6 in xcom_tcp_server_startup(Xcom_network_provider*) ()

When the server stalled in the above path forever, it prohibited other members
to join the cluster resulting in the following messages on the joiner server's
logs.

    [ERROR] [MY-011640] [Repl] Plugin group_replication reported: 'Timeout on wait for view after joining group'
    [ERROR] [MY-011735] [Repl] Plugin group_replication reported: '[GCS] The member is already leaving or joining a group.'

Solution
--------
This patch adds two new variables

1. group_replication_xcom_ssl_socket_timeout

   It is a file-descriptor level timeout in seconds for both accept() and
   SSL_accept() calls when group replication is listening on the xcom port.
   When set to a valid value, say for example 5 seconds, both accept() and
   SSL_accept() return after 5 seconds. The default value has been set to 0
   (waits infinitely) for backward compatibility. This variable is effective
   only when GR is configred with SSL.

2. group_replication_xcom_ssl_accept_retries

   It defines the number of retries to be performed before closing the socket.
   For each retry the server thread calls SSL_accept()  with timeout defined by
   the group_replication_xcom_ssl_socket_timeout for the SSL handshake process
   once the connection has been accepted by the first accept() call. The
   default value has been set to 10. This variable is effective only when GR is
   configred with SSL.

Note:
- Both of the above variables are dynamically configurable, but will become
  effective only on START GROUP_REPLICATION.

-------------------------------------------------------------------------------

PS-8844: Fix the failing main.mysqldump_gtid_purged

https://jira.percona.com/browse/PS-8844

This patch fixes the test failure of main.mysqldump_gtid_purged that
failed due to the uninitialized variable $redirect_stderr in the
start_proc_in_background.inc.
VarunNagaraju pushed a commit that referenced this pull request Jun 5, 2024
…ocal DDL

         executed

https://perconadev.atlassian.net/browse/PS-9018

Problem
-------
In high concurrency scenarios, MySQL replica can enter into a deadlock due to a
race condition between the replica applier thread and the client thread
performing a binlog group commit.

Analysis
--------
It needs at least 3 threads for this deadlock to happen

1. One client thread
2. Two replica applier threads

How this deadlock happens?
--------------------------
0. Binlog is enabled on replica, but log_replica_updates is disabled.

1. Initially, both "Commit Order" and "Binlog Flush" queues are empty.

2. Replica applier thread 1 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

3. Since both "Commit Order" and "Binlog Flush" queues are empty, the applier
   thread 1

   3.1. Becomes leader (In Commit_stage_manager::enroll_for()).

   3.2. Registers in the commit order queue.

   3.3. Acquires the lock MYSQL_BIN_LOG::LOCK_log.

   3.4. Commit Order queue is emptied, but the lock MYSQL_BIN_LOG::LOCK_log is
        not yet released.

   NOTE: SE commit for applier thread is already done by the time it reaches
         here.

4. Replica applier thread 2 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

5. Since the "Commit Order" queue is empty (emptied by applier thread 1 in 3.4), the
   applier thread 2

   5.1. Becomes leader (In Commit_stage_manager::enroll_for())

   5.2. Registers in the commit order queue.

   5.3. Tries to acquire the lock MYSQL_BIN_LOG::LOCK_log. Since it is held by applier
        thread 1 it will wait until the lock is released.

6. Client thread enters the group commit pipeline to register in the
   "Binlog Flush" queue.

7. Since "Commit Order" queue is not empty (there is applier thread 2 in the
   queue), it enters the conditional wait `m_stage_cond_leader` with an
   intention to become the leader for both the "Binlog Flush" and
   "Commit Order" queues.

8. Applier thread 1 releases the lock MYSQL_BIN_LOG::LOCK_log and proceeds to update
   the GTID by calling gtid_state->update_commit_group() from
   Commit_order_manager::flush_engine_and_signal_threads().

9. Applier thread 2 acquires the lock MYSQL_BIN_LOG::LOCK_log.

   9.1. It checks if there is any thread waiting in the "Binlog Flush" queue
        to become the leader. Here it finds the client thread waiting to be
        the leader.

   9.2. It releases the lock MYSQL_BIN_LOG::LOCK_log and signals on the
        cond_var `m_stage_cond_leader` and enters a conditional wait until the
        thread's `tx_commit_pending` is set to false by the client thread
       (will be done in the
       Commit_stage_manager::process_final_stage_for_ordered_commit_group()
       called by client thread from fetch_and_process_flush_stage_queue()).

10. The client thread wakes up from the cond_var `m_stage_cond_leader`.  The
    thread has now become a leader and it is its responsibility to update GTID
    of applier thread 2.

    10.1. It acquires the lock MYSQL_BIN_LOG::LOCK_log.

    10.2. Returns from `enroll_for()` and proceeds to process the
          "Commit Order" and "Binlog Flush" queues.

    10.3. Fetches the "Commit Order" and "Binlog Flush" queues.

    10.4. Performs the storage engine flush by calling ha_flush_logs() from
          fetch_and_process_flush_stage_queue().

    10.5. Proceeds to update the GTID of threads in "Commit Order" queue by
          calling gtid_state->update_commit_group() from
          Commit_stage_manager::process_final_stage_for_ordered_commit_group().

11. At this point, we will have

    - Client thread performing GTID update on behalf if applier thread 2 (from step 10.5), and
    - Applier thread 1 performing GTID update for itself (from step 8).

    Due to the lack of proper synchronization between the above two threads,
    there exists a time window where both threads can call
    gtid_state->update_commit_group() concurrently.

    In subsequent steps, both threads simultaneously try to modify the contents
    of the array `commit_group_sidnos` which is used to track the lock status of
    sidnos. This concurrent access to `update_commit_group()` can cause a
    lock-leak resulting in one thread acquiring the sidno lock and not
    releasing at all.

-----------------------------------------------------------------------------------------------------------
Client thread                                           Applier Thread 1
-----------------------------------------------------------------------------------------------------------
update_commit_group() => global_sid_lock->rdlock();     update_commit_group() => global_sid_lock->rdlock();

calls update_gtids_impl_lock_sidnos()                   calls update_gtids_impl_lock_sidnos()

set commit_group_sidno[2] = true                        set commit_group_sidno[2] = true

                                                        lock_sidno(2) -> successful

lock_sidno(2) -> waits

                                                        update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

                                                        if (commit_group_sidnos[2]) {
                                                          unlock_sidno(2);
                                                          commit_group_sidnos[2] = false;
                                                        }

                                                        Applier thread continues..

lock_sidno(2) -> successful

update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

if (commit_group_sidnos[2]) { <=== this check fails and lock is not released.
  unlock_sidno(2);
  commit_group_sidnos[2] = false;
}

Client thread continues without releasing the lock
-----------------------------------------------------------------------------------------------------------

12. As the above lock-leak can also happen the other way i.e, the applier
    thread fails to unlock, there can be different consequences hereafter.

13. If the client thread continues without releasing the lock, then at a later
    stage, it can enter into a deadlock with the applier thread performing a
    GTID update with stack trace.

    Client_thread
    -------------
    #1  __GI___lll_lock_wait
    #2  ___pthread_mutex_lock
    #3  native_mutex_lock                                       <= waits for commit lock while holding sidno lock
    #4  Commit_stage_manager::enroll_for
    percona#5  MYSQL_BIN_LOG::change_stage
    percona#6  MYSQL_BIN_LOG::ordered_commit
    percona#7  MYSQL_BIN_LOG::commit
    percona#8  ha_commit_trans
    percona#9  trans_commit_implicit
    percona#10 mysql_create_like_table
    percona#11 Sql_cmd_create_table::execute
    percona#12 mysql_execute_command
    percona#13 dispatch_sql_command

    Applier thread
    --------------
    #1  ___pthread_mutex_lock
    #2  native_mutex_lock
    #3  safe_mutex_lock
    #4  Gtid_state::update_gtids_impl_lock_sidnos               <= waits for sidno lock
    percona#5  Gtid_state::update_commit_group
    percona#6  Commit_order_manager::flush_engine_and_signal_threads   <= acquires commit lock here
    percona#7  Commit_order_manager::finish
    percona#8  Commit_order_manager::wait_and_finish
    percona#9  ha_commit_low
    percona#10 trx_coordinator::commit_in_engines
    percona#11 MYSQL_BIN_LOG::commit
    percona#12 ha_commit_trans
    percona#13 trans_commit
    percona#14 Xid_log_event::do_commit
    percona#15 Xid_apply_log_event::do_apply_event_worker
    percona#16 Slave_worker::slave_worker_exec_event
    percona#17 slave_worker_exec_job_group
    percona#18 handle_slave_worker

14. If the applier thread continues without releasing the lock, then at a later
    stage, it can perform recursive locking while setting the GTID for the next
    transaction (in set_gtid_next()).

    In debug builds the above case hits the assertion
    `safe_mutex_assert_not_owner()` meaning the lock is already acquired by the
    replica applier thread when it tries to re-acquire the lock.

Solution
--------
In the above problematic example, when seen from each thread
individually, we can conclude that there is no problem in the order of lock
acquisition, thus there is no need to change the lock order.

However, the root cause for this problem is that multiple threads can
concurrently access to the array `Gtid_state::commit_group_sidnos`.

In its initial implementation, it was expected that threads should
hold the `MYSQL_BIN_LOG::LOCK_commit` before modifying its contents. But it
was not considered when upstream implemented WL#7846 (MTS:
slave-preserve-commit-order when log-slave-updates/binlog is disabled).

With this patch, we now ensure that `MYSQL_BIN_LOG::LOCK_commit` is acquired
when the client thread (binlog flush leader) when it tries to perform GTID
update on behalf of threads waiting in "Commit Order" queue, thus providing a
guarantee that `Gtid_state::commit_group_sidnos` array is never accessed
without the protection of `MYSQL_BIN_LOG::LOCK_commit`.
VarunNagaraju pushed a commit that referenced this pull request Jun 5, 2024
…ocal DDL

         executed

https://perconadev.atlassian.net/browse/PS-9018

Problem
-------
In high concurrency scenarios, MySQL replica can enter into a deadlock due to a
race condition between the replica applier thread and the client thread
performing a binlog group commit.

Analysis
--------
It needs at least 3 threads for this deadlock to happen

1. One client thread
2. Two replica applier threads

How this deadlock happens?
--------------------------
0. Binlog is enabled on replica, but log_replica_updates is disabled.

1. Initially, both "Commit Order" and "Binlog Flush" queues are empty.

2. Replica applier thread 1 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

3. Since both "Commit Order" and "Binlog Flush" queues are empty, the applier
   thread 1

   3.1. Becomes leader (In Commit_stage_manager::enroll_for()).

   3.2. Registers in the commit order queue.

   3.3. Acquires the lock MYSQL_BIN_LOG::LOCK_log.

   3.4. Commit Order queue is emptied, but the lock MYSQL_BIN_LOG::LOCK_log is
        not yet released.

   NOTE: SE commit for applier thread is already done by the time it reaches
         here.

4. Replica applier thread 2 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

5. Since the "Commit Order" queue is empty (emptied by applier thread 1 in 3.4), the
   applier thread 2

   5.1. Becomes leader (In Commit_stage_manager::enroll_for())

   5.2. Registers in the commit order queue.

   5.3. Tries to acquire the lock MYSQL_BIN_LOG::LOCK_log. Since it is held by applier
        thread 1 it will wait until the lock is released.

6. Client thread enters the group commit pipeline to register in the
   "Binlog Flush" queue.

7. Since "Commit Order" queue is not empty (there is applier thread 2 in the
   queue), it enters the conditional wait `m_stage_cond_leader` with an
   intention to become the leader for both the "Binlog Flush" and
   "Commit Order" queues.

8. Applier thread 1 releases the lock MYSQL_BIN_LOG::LOCK_log and proceeds to update
   the GTID by calling gtid_state->update_commit_group() from
   Commit_order_manager::flush_engine_and_signal_threads().

9. Applier thread 2 acquires the lock MYSQL_BIN_LOG::LOCK_log.

   9.1. It checks if there is any thread waiting in the "Binlog Flush" queue
        to become the leader. Here it finds the client thread waiting to be
        the leader.

   9.2. It releases the lock MYSQL_BIN_LOG::LOCK_log and signals on the
        cond_var `m_stage_cond_leader` and enters a conditional wait until the
        thread's `tx_commit_pending` is set to false by the client thread
       (will be done in the
       Commit_stage_manager::process_final_stage_for_ordered_commit_group()
       called by client thread from fetch_and_process_flush_stage_queue()).

10. The client thread wakes up from the cond_var `m_stage_cond_leader`.  The
    thread has now become a leader and it is its responsibility to update GTID
    of applier thread 2.

    10.1. It acquires the lock MYSQL_BIN_LOG::LOCK_log.

    10.2. Returns from `enroll_for()` and proceeds to process the
          "Commit Order" and "Binlog Flush" queues.

    10.3. Fetches the "Commit Order" and "Binlog Flush" queues.

    10.4. Performs the storage engine flush by calling ha_flush_logs() from
          fetch_and_process_flush_stage_queue().

    10.5. Proceeds to update the GTID of threads in "Commit Order" queue by
          calling gtid_state->update_commit_group() from
          Commit_stage_manager::process_final_stage_for_ordered_commit_group().

11. At this point, we will have

    - Client thread performing GTID update on behalf if applier thread 2 (from step 10.5), and
    - Applier thread 1 performing GTID update for itself (from step 8).

    Due to the lack of proper synchronization between the above two threads,
    there exists a time window where both threads can call
    gtid_state->update_commit_group() concurrently.

    In subsequent steps, both threads simultaneously try to modify the contents
    of the array `commit_group_sidnos` which is used to track the lock status of
    sidnos. This concurrent access to `update_commit_group()` can cause a
    lock-leak resulting in one thread acquiring the sidno lock and not
    releasing at all.

-----------------------------------------------------------------------------------------------------------
Client thread                                           Applier Thread 1
-----------------------------------------------------------------------------------------------------------
update_commit_group() => global_sid_lock->rdlock();     update_commit_group() => global_sid_lock->rdlock();

calls update_gtids_impl_lock_sidnos()                   calls update_gtids_impl_lock_sidnos()

set commit_group_sidno[2] = true                        set commit_group_sidno[2] = true

                                                        lock_sidno(2) -> successful

lock_sidno(2) -> waits

                                                        update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

                                                        if (commit_group_sidnos[2]) {
                                                          unlock_sidno(2);
                                                          commit_group_sidnos[2] = false;
                                                        }

                                                        Applier thread continues..

lock_sidno(2) -> successful

update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

if (commit_group_sidnos[2]) { <=== this check fails and lock is not released.
  unlock_sidno(2);
  commit_group_sidnos[2] = false;
}

Client thread continues without releasing the lock
-----------------------------------------------------------------------------------------------------------

12. As the above lock-leak can also happen the other way i.e, the applier
    thread fails to unlock, there can be different consequences hereafter.

13. If the client thread continues without releasing the lock, then at a later
    stage, it can enter into a deadlock with the applier thread performing a
    GTID update with stack trace.

    Client_thread
    -------------
    #1  __GI___lll_lock_wait
    #2  ___pthread_mutex_lock
    #3  native_mutex_lock                                       <= waits for commit lock while holding sidno lock
    #4  Commit_stage_manager::enroll_for
    percona#5  MYSQL_BIN_LOG::change_stage
    percona#6  MYSQL_BIN_LOG::ordered_commit
    percona#7  MYSQL_BIN_LOG::commit
    percona#8  ha_commit_trans
    percona#9  trans_commit_implicit
    percona#10 mysql_create_like_table
    percona#11 Sql_cmd_create_table::execute
    percona#12 mysql_execute_command
    percona#13 dispatch_sql_command

    Applier thread
    --------------
    #1  ___pthread_mutex_lock
    #2  native_mutex_lock
    #3  safe_mutex_lock
    #4  Gtid_state::update_gtids_impl_lock_sidnos               <= waits for sidno lock
    percona#5  Gtid_state::update_commit_group
    percona#6  Commit_order_manager::flush_engine_and_signal_threads   <= acquires commit lock here
    percona#7  Commit_order_manager::finish
    percona#8  Commit_order_manager::wait_and_finish
    percona#9  ha_commit_low
    percona#10 trx_coordinator::commit_in_engines
    percona#11 MYSQL_BIN_LOG::commit
    percona#12 ha_commit_trans
    percona#13 trans_commit
    percona#14 Xid_log_event::do_commit
    percona#15 Xid_apply_log_event::do_apply_event_worker
    percona#16 Slave_worker::slave_worker_exec_event
    percona#17 slave_worker_exec_job_group
    percona#18 handle_slave_worker

14. If the applier thread continues without releasing the lock, then at a later
    stage, it can perform recursive locking while setting the GTID for the next
    transaction (in set_gtid_next()).

    In debug builds the above case hits the assertion
    `safe_mutex_assert_not_owner()` meaning the lock is already acquired by the
    replica applier thread when it tries to re-acquire the lock.

Solution
--------
In the above problematic example, when seen from each thread
individually, we can conclude that there is no problem in the order of lock
acquisition, thus there is no need to change the lock order.

However, the root cause for this problem is that multiple threads can
concurrently access to the array `Gtid_state::commit_group_sidnos`.

In its initial implementation, it was expected that threads should
hold the `MYSQL_BIN_LOG::LOCK_commit` before modifying its contents. But it
was not considered when upstream implemented WL#7846 (MTS:
slave-preserve-commit-order when log-slave-updates/binlog is disabled).

With this patch, we now ensure that `MYSQL_BIN_LOG::LOCK_commit` is acquired
when the client thread (binlog flush leader) when it tries to perform GTID
update on behalf of threads waiting in "Commit Order" queue, thus providing a
guarantee that `Gtid_state::commit_group_sidnos` array is never accessed
without the protection of `MYSQL_BIN_LOG::LOCK_commit`.
VarunNagaraju pushed a commit that referenced this pull request Jun 10, 2024
Problem:
Starting ´ndb_mgmd --bind-address´ may potentially cause abnormal
program termination in MgmtSrvr destructor when ndb_mgmd restart itself.

  Core was generated by `ndb_mgmd --defa'.
  Program terminated with signal SIGABRT,   Aborted.
  #0  0x00007f8ce4066b8f in raise () from /lib64/libc.so.6
  #1  0x00007f8ce4039ea5 in abort () from /lib64/libc.so.6
  #2  0x00007f8ce40a7d97 in __libc_message () from /lib64/libc.so.6
  #3  0x00007f8ce40af08c in malloc_printerr () from /lib64/libc.so.6
  #4  0x00007f8ce40b132d in _int_free () from /lib64/libc.so.6
  percona#5  0x00000000006e9ffe in MgmtSrvr::~MgmtSrvr (this=0x28de4b0) at
mysql/8.0/storage/ndb/src/mgmsrv/MgmtSrvr.cpp:
890
  percona#6  0x00000000006ea09e in MgmtSrvr::~MgmtSrvr (this=0x2) at mysql/8.0/
storage/ndb/src/mgmsrv/MgmtSrvr.cpp:849
  percona#7  0x0000000000700d94 in mgmd_run () at
mysql/8.0/storage/ndb/src/mgmsrv/main.cpp:260
  percona#8  0x0000000000700775 in mgmd_main (argc=<optimized out>,
argv=0x28041d0) at mysql/8.0/storage/ndb/src/
mgmsrv/main.cpp:479

Analysis:
While starting up, the ndb_mgmd will allocate memory for bind_address in
order to potentially rewrite the parameter. When ndb_mgmd restart itself
the memory will be released and dangling pointer causing double free.

Fix:
Drop support for bind_address=[::], it is not documented anywhere, is
not useful and doesn't work.
This means the need to rewrite bind_address is gone and bind_address
argument need neither alloc or free.

Change-Id: I7797109b9d8391394587188d64d4b1f398887e94
VarunNagaraju pushed a commit that referenced this pull request Jun 10, 2024
Upstream commit ID : fb-mysql-5.6.35/8cb1dc836b68f1f13e8b2655b2b8cb2d57f400b3
PS-5217 : Merge fb-prod201803

Summary:
Original report: https://jira.mariadb.org/browse/MDEV-15816

To reproduce this bug just following below steps,

client 1:
USE test;
CREATE TABLE t1 (i INT) ENGINE=MyISAM;
HANDLER t1 OPEN h;
CREATE TABLE t2 (i INT) ENGINE=RocksDB;
LOCK TABLES t2 WRITE;

client 2:
FLUSH TABLES WITH READ LOCK;

client 1:
INSERT INTO t2 VALUES (1);

So client 1 acquired the lock and set m_lock_rows = RDB_LOCK_WRITE.
Then client 2 calls store_lock(TL_IGNORE) and m_lock_rows was wrongly
set to RDB_LOCK_NONE, as below

```
 #0  myrocks::ha_rocksdb::store_lock (this=0x7fffbc03c7c8, thd=0x7fffc0000ba0, to=0x7fffc0011220, lock_type=TL_IGNORE)
 #1  get_lock_data (thd=0x7fffc0000ba0, table_ptr=0x7fffe84b7d20, count=1, flags=2)
 #2  mysql_lock_abort_for_thread (thd=0x7fffc0000ba0, table=0x7fffbc03bbc0)
 #3  THD::notify_shared_lock (this=0x7fffc0000ba0, ctx_in_use=0x7fffbc000bd8, needs_thr_lock_abort=true)
 #4  MDL_lock::notify_conflicting_locks (this=0x555557a82380, ctx=0x7fffc0000cc8)
 percona#5  MDL_context::acquire_lock (this=0x7fffc0000cc8, mdl_request=0x7fffe84b8350, lock_wait_timeout=2)
 percona#6  Global_read_lock::lock_global_read_lock (this=0x7fffc0003fe0, thd=0x7fffc0000ba0)
```

Finally, client 1 "INSERT INTO..." hits the Assertion 'm_lock_rows == RDB_LOCK_WRITE'
failed in myrocks::ha_rocksdb::write_row()

Fix this bug by not setting m_locks_rows if lock_type == TL_IGNORE.

Closes facebook/mysql-5.6#838
Pull Request resolved: facebook/mysql-5.6#871

Differential Revision: D9417382

Pulled By: lth

fbshipit-source-id: c36c164e06c
VarunNagaraju pushed a commit that referenced this pull request Jun 10, 2024
PS-5741: Incorrect use of memset_s in keyring_vault.

Fixed the usage of memset_s. The arguments should be:
void memset_s(void *dest, size_t dest_max, int c, size_t n)
where the 2nd argument is size of buffer and the 3rd is
argument is character to fill.

---------------------------------------------------------------------------

PS-7769 - Fix use-after-return error in audit_log_exclude_accounts_validate

---

*Problem:*

`st_mysql_value::val_str` might return a pointer to `buf` which after
the function called is deleted. Therefore the value in `save`, after
reuturnin from the function, is invalid.

In this particular case, the error is not manifesting as val_str`
returns memory allocated with `thd_strmake` and it does not use `buf`.

*Solution:*

Allocate memory with `thd_strmake` so the memory in `save` is not local.

---------------------------------------------------------------------------

Fix test main.bug12969156 when WITH_ASAN=ON

*Problem:*

ASAN complains about stack-buffer-overflow on function `mysql_heartbeat`:

```
==90890==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7fe746d06d14 at pc 0x7fe760f5b017 bp 0x7fe746d06cd0 sp 0x7fe746d06478
WRITE of size 24 at 0x7fe746d06d14 thread T16777215

Address 0x7fe746d06d14 is located in stack of thread T26 at offset 340 in frame
    #0 0x7fe746d0a55c in mysql_heartbeat(void*) /home/yura/ws/percona-server/plugin/daemon_example/daemon_example.cc:62

  This frame has 4 object(s):
    [48, 56) 'result' (line 66)
    [80, 112) '_db_stack_frame_' (line 63)
    [144, 200) 'tm_tmp' (line 67)
    [240, 340) 'buffer' (line 65) <== Memory access at offset 340 overflows this variable
HINT: this may be a false positive if your program uses some custom stack unwind mechanism, swapcontext or vfork
      (longjmp and C++ exceptions *are* supported)
Thread T26 created by T25 here:
    #0 0x7fe760f5f6d5 in __interceptor_pthread_create ../../../../src/libsanitizer/asan/asan_interceptors.cpp:216
    #1 0x557ccbbcb857 in my_thread_create /home/yura/ws/percona-server/mysys/my_thread.c:104
    #2 0x7fe746d0b21a in daemon_example_plugin_init /home/yura/ws/percona-server/plugin/daemon_example/daemon_example.cc:148
    #3 0x557ccb4c69c7 in plugin_initialize /home/yura/ws/percona-server/sql/sql_plugin.cc:1279
    #4 0x557ccb4d19cd in mysql_install_plugin /home/yura/ws/percona-server/sql/sql_plugin.cc:2279
    percona#5 0x557ccb4d218f in Sql_cmd_install_plugin::execute(THD*) /home/yura/ws/percona-server/sql/sql_plugin.cc:4664
    percona#6 0x557ccb47695e in mysql_execute_command(THD*, bool) /home/yura/ws/percona-server/sql/sql_parse.cc:5160
    percona#7 0x557ccb47977c in mysql_parse(THD*, Parser_state*, bool) /home/yura/ws/percona-server/sql/sql_parse.cc:5952
    percona#8 0x557ccb47b6c2 in dispatch_command(THD*, COM_DATA const*, enum_server_command) /home/yura/ws/percona-server/sql/sql_parse.cc:1544
    percona#9 0x557ccb47de1d in do_command(THD*) /home/yura/ws/percona-server/sql/sql_parse.cc:1065
    percona#10 0x557ccb6ac294 in handle_connection /home/yura/ws/percona-server/sql/conn_handler/connection_handler_per_thread.cc:325
    percona#11 0x557ccbbfabb0 in pfs_spawn_thread /home/yura/ws/percona-server/storage/perfschema/pfs.cc:2198
    percona#12 0x7fe760ab544f in start_thread nptl/pthread_create.c:473
```

The reason is that `my_thread_cancel` is used to finish the daemon thread. This is not and orderly way of finishing the thread. ASAN does not register the stack variables are not used anymore which generates the error above.

This is a benign error as all the variables are on the stack.

*Solution*:

Finish the thread in orderly way by using a signalling variable.

---------------------------------------------------------------------------

PS-8204: Fix XML escape rules for audit plugin

https://jira.percona.com/browse/PS-8204

There was a wrong length specified for some XML
escape rules. As a result of this terminating null symbol from
replacement rule was copied into resulting string. This lead to
quer text truncation in audit log file.
In addition added empty replacement rules for '\b' and 'f' symbols
which just remove them from resulting string. These symboles are
not supported in XML 1.0.

---------------------------------------------------------------------------

PS-8854: Add main.percona_udf MTR test

Add a test to check FNV1A_64, FNV_64, and MURMUR_HASH user-defined functions.
VarunNagaraju pushed a commit that referenced this pull request Jun 10, 2024
…n read() syscall over network

https://jira.percona.com/browse/PS-8592

Description
-----------
GR suffered from problems caused by the security probes and network scanner
processes connecting to the group replication communication port. This usually
is not a problem, but poses a serious threat when another member tries to join
the cluster by initialting a connection to the member which is affected by
external processes using the port dedicated for group communication for longer
durations.

On such activites by external processes, the SSL enabled server stalled forever
on the SSL_accept() call waiting for handshake data. Below is the stacktrace:

    Thread 55 (Thread 0x7f7bb77ff700 (LWP 2198598)):
    #0 in read ()
    #1 in sock_read ()
    #2 in BIO_read ()
    #3 in ssl23_read_bytes ()
    #4 in ssl23_get_client_hello ()
    percona#5 in ssl23_accept ()
    percona#6 in xcom_tcp_server_startup(Xcom_network_provider*) ()

When the server stalled in the above path forever, it prohibited other members
to join the cluster resulting in the following messages on the joiner server's
logs.

    [ERROR] [MY-011640] [Repl] Plugin group_replication reported: 'Timeout on wait for view after joining group'
    [ERROR] [MY-011735] [Repl] Plugin group_replication reported: '[GCS] The member is already leaving or joining a group.'

Solution
--------
This patch adds two new variables

1. group_replication_xcom_ssl_socket_timeout

   It is a file-descriptor level timeout in seconds for both accept() and
   SSL_accept() calls when group replication is listening on the xcom port.
   When set to a valid value, say for example 5 seconds, both accept() and
   SSL_accept() return after 5 seconds. The default value has been set to 0
   (waits infinitely) for backward compatibility. This variable is effective
   only when GR is configred with SSL.

2. group_replication_xcom_ssl_accept_retries

   It defines the number of retries to be performed before closing the socket.
   For each retry the server thread calls SSL_accept()  with timeout defined by
   the group_replication_xcom_ssl_socket_timeout for the SSL handshake process
   once the connection has been accepted by the first accept() call. The
   default value has been set to 10. This variable is effective only when GR is
   configred with SSL.

Note:
- Both of the above variables are dynamically configurable, but will become
  effective only on START GROUP_REPLICATION.

-------------------------------------------------------------------------------

PS-8844: Fix the failing main.mysqldump_gtid_purged

https://jira.percona.com/browse/PS-8844

This patch fixes the test failure of main.mysqldump_gtid_purged that
failed due to the uninitialized variable $redirect_stderr in the
start_proc_in_background.inc.
VarunNagaraju pushed a commit that referenced this pull request Jun 10, 2024
…ocal DDL

         executed

https://perconadev.atlassian.net/browse/PS-9018

Problem
-------
In high concurrency scenarios, MySQL replica can enter into a deadlock due to a
race condition between the replica applier thread and the client thread
performing a binlog group commit.

Analysis
--------
It needs at least 3 threads for this deadlock to happen

1. One client thread
2. Two replica applier threads

How this deadlock happens?
--------------------------
0. Binlog is enabled on replica, but log_replica_updates is disabled.

1. Initially, both "Commit Order" and "Binlog Flush" queues are empty.

2. Replica applier thread 1 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

3. Since both "Commit Order" and "Binlog Flush" queues are empty, the applier
   thread 1

   3.1. Becomes leader (In Commit_stage_manager::enroll_for()).

   3.2. Registers in the commit order queue.

   3.3. Acquires the lock MYSQL_BIN_LOG::LOCK_log.

   3.4. Commit Order queue is emptied, but the lock MYSQL_BIN_LOG::LOCK_log is
        not yet released.

   NOTE: SE commit for applier thread is already done by the time it reaches
         here.

4. Replica applier thread 2 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

5. Since the "Commit Order" queue is empty (emptied by applier thread 1 in 3.4), the
   applier thread 2

   5.1. Becomes leader (In Commit_stage_manager::enroll_for())

   5.2. Registers in the commit order queue.

   5.3. Tries to acquire the lock MYSQL_BIN_LOG::LOCK_log. Since it is held by applier
        thread 1 it will wait until the lock is released.

6. Client thread enters the group commit pipeline to register in the
   "Binlog Flush" queue.

7. Since "Commit Order" queue is not empty (there is applier thread 2 in the
   queue), it enters the conditional wait `m_stage_cond_leader` with an
   intention to become the leader for both the "Binlog Flush" and
   "Commit Order" queues.

8. Applier thread 1 releases the lock MYSQL_BIN_LOG::LOCK_log and proceeds to update
   the GTID by calling gtid_state->update_commit_group() from
   Commit_order_manager::flush_engine_and_signal_threads().

9. Applier thread 2 acquires the lock MYSQL_BIN_LOG::LOCK_log.

   9.1. It checks if there is any thread waiting in the "Binlog Flush" queue
        to become the leader. Here it finds the client thread waiting to be
        the leader.

   9.2. It releases the lock MYSQL_BIN_LOG::LOCK_log and signals on the
        cond_var `m_stage_cond_leader` and enters a conditional wait until the
        thread's `tx_commit_pending` is set to false by the client thread
       (will be done in the
       Commit_stage_manager::process_final_stage_for_ordered_commit_group()
       called by client thread from fetch_and_process_flush_stage_queue()).

10. The client thread wakes up from the cond_var `m_stage_cond_leader`.  The
    thread has now become a leader and it is its responsibility to update GTID
    of applier thread 2.

    10.1. It acquires the lock MYSQL_BIN_LOG::LOCK_log.

    10.2. Returns from `enroll_for()` and proceeds to process the
          "Commit Order" and "Binlog Flush" queues.

    10.3. Fetches the "Commit Order" and "Binlog Flush" queues.

    10.4. Performs the storage engine flush by calling ha_flush_logs() from
          fetch_and_process_flush_stage_queue().

    10.5. Proceeds to update the GTID of threads in "Commit Order" queue by
          calling gtid_state->update_commit_group() from
          Commit_stage_manager::process_final_stage_for_ordered_commit_group().

11. At this point, we will have

    - Client thread performing GTID update on behalf if applier thread 2 (from step 10.5), and
    - Applier thread 1 performing GTID update for itself (from step 8).

    Due to the lack of proper synchronization between the above two threads,
    there exists a time window where both threads can call
    gtid_state->update_commit_group() concurrently.

    In subsequent steps, both threads simultaneously try to modify the contents
    of the array `commit_group_sidnos` which is used to track the lock status of
    sidnos. This concurrent access to `update_commit_group()` can cause a
    lock-leak resulting in one thread acquiring the sidno lock and not
    releasing at all.

-----------------------------------------------------------------------------------------------------------
Client thread                                           Applier Thread 1
-----------------------------------------------------------------------------------------------------------
update_commit_group() => global_sid_lock->rdlock();     update_commit_group() => global_sid_lock->rdlock();

calls update_gtids_impl_lock_sidnos()                   calls update_gtids_impl_lock_sidnos()

set commit_group_sidno[2] = true                        set commit_group_sidno[2] = true

                                                        lock_sidno(2) -> successful

lock_sidno(2) -> waits

                                                        update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

                                                        if (commit_group_sidnos[2]) {
                                                          unlock_sidno(2);
                                                          commit_group_sidnos[2] = false;
                                                        }

                                                        Applier thread continues..

lock_sidno(2) -> successful

update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

if (commit_group_sidnos[2]) { <=== this check fails and lock is not released.
  unlock_sidno(2);
  commit_group_sidnos[2] = false;
}

Client thread continues without releasing the lock
-----------------------------------------------------------------------------------------------------------

12. As the above lock-leak can also happen the other way i.e, the applier
    thread fails to unlock, there can be different consequences hereafter.

13. If the client thread continues without releasing the lock, then at a later
    stage, it can enter into a deadlock with the applier thread performing a
    GTID update with stack trace.

    Client_thread
    -------------
    #1  __GI___lll_lock_wait
    #2  ___pthread_mutex_lock
    #3  native_mutex_lock                                       <= waits for commit lock while holding sidno lock
    #4  Commit_stage_manager::enroll_for
    percona#5  MYSQL_BIN_LOG::change_stage
    percona#6  MYSQL_BIN_LOG::ordered_commit
    percona#7  MYSQL_BIN_LOG::commit
    percona#8  ha_commit_trans
    percona#9  trans_commit_implicit
    percona#10 mysql_create_like_table
    percona#11 Sql_cmd_create_table::execute
    percona#12 mysql_execute_command
    percona#13 dispatch_sql_command

    Applier thread
    --------------
    #1  ___pthread_mutex_lock
    #2  native_mutex_lock
    #3  safe_mutex_lock
    #4  Gtid_state::update_gtids_impl_lock_sidnos               <= waits for sidno lock
    percona#5  Gtid_state::update_commit_group
    percona#6  Commit_order_manager::flush_engine_and_signal_threads   <= acquires commit lock here
    percona#7  Commit_order_manager::finish
    percona#8  Commit_order_manager::wait_and_finish
    percona#9  ha_commit_low
    percona#10 trx_coordinator::commit_in_engines
    percona#11 MYSQL_BIN_LOG::commit
    percona#12 ha_commit_trans
    percona#13 trans_commit
    percona#14 Xid_log_event::do_commit
    percona#15 Xid_apply_log_event::do_apply_event_worker
    percona#16 Slave_worker::slave_worker_exec_event
    percona#17 slave_worker_exec_job_group
    percona#18 handle_slave_worker

14. If the applier thread continues without releasing the lock, then at a later
    stage, it can perform recursive locking while setting the GTID for the next
    transaction (in set_gtid_next()).

    In debug builds the above case hits the assertion
    `safe_mutex_assert_not_owner()` meaning the lock is already acquired by the
    replica applier thread when it tries to re-acquire the lock.

Solution
--------
In the above problematic example, when seen from each thread
individually, we can conclude that there is no problem in the order of lock
acquisition, thus there is no need to change the lock order.

However, the root cause for this problem is that multiple threads can
concurrently access to the array `Gtid_state::commit_group_sidnos`.

In its initial implementation, it was expected that threads should
hold the `MYSQL_BIN_LOG::LOCK_commit` before modifying its contents. But it
was not considered when upstream implemented WL#7846 (MTS:
slave-preserve-commit-order when log-slave-updates/binlog is disabled).

With this patch, we now ensure that `MYSQL_BIN_LOG::LOCK_commit` is acquired
when the client thread (binlog flush leader) when it tries to perform GTID
update on behalf of threads waiting in "Commit Order" queue, thus providing a
guarantee that `Gtid_state::commit_group_sidnos` array is never accessed
without the protection of `MYSQL_BIN_LOG::LOCK_commit`.
VarunNagaraju pushed a commit that referenced this pull request Jun 12, 2024
Upstream commit ID : fb-mysql-5.6.35/8cb1dc836b68f1f13e8b2655b2b8cb2d57f400b3
PS-5217 : Merge fb-prod201803

Summary:
Original report: https://jira.mariadb.org/browse/MDEV-15816

To reproduce this bug just following below steps,

client 1:
USE test;
CREATE TABLE t1 (i INT) ENGINE=MyISAM;
HANDLER t1 OPEN h;
CREATE TABLE t2 (i INT) ENGINE=RocksDB;
LOCK TABLES t2 WRITE;

client 2:
FLUSH TABLES WITH READ LOCK;

client 1:
INSERT INTO t2 VALUES (1);

So client 1 acquired the lock and set m_lock_rows = RDB_LOCK_WRITE.
Then client 2 calls store_lock(TL_IGNORE) and m_lock_rows was wrongly
set to RDB_LOCK_NONE, as below

```
 #0  myrocks::ha_rocksdb::store_lock (this=0x7fffbc03c7c8, thd=0x7fffc0000ba0, to=0x7fffc0011220, lock_type=TL_IGNORE)
 #1  get_lock_data (thd=0x7fffc0000ba0, table_ptr=0x7fffe84b7d20, count=1, flags=2)
 #2  mysql_lock_abort_for_thread (thd=0x7fffc0000ba0, table=0x7fffbc03bbc0)
 #3  THD::notify_shared_lock (this=0x7fffc0000ba0, ctx_in_use=0x7fffbc000bd8, needs_thr_lock_abort=true)
 #4  MDL_lock::notify_conflicting_locks (this=0x555557a82380, ctx=0x7fffc0000cc8)
 percona#5  MDL_context::acquire_lock (this=0x7fffc0000cc8, mdl_request=0x7fffe84b8350, lock_wait_timeout=2)
 percona#6  Global_read_lock::lock_global_read_lock (this=0x7fffc0003fe0, thd=0x7fffc0000ba0)
```

Finally, client 1 "INSERT INTO..." hits the Assertion 'm_lock_rows == RDB_LOCK_WRITE'
failed in myrocks::ha_rocksdb::write_row()

Fix this bug by not setting m_locks_rows if lock_type == TL_IGNORE.

Closes facebook/mysql-5.6#838
Pull Request resolved: facebook/mysql-5.6#871

Differential Revision: D9417382

Pulled By: lth

fbshipit-source-id: c36c164e06c
VarunNagaraju pushed a commit that referenced this pull request Jun 12, 2024
PS-5741: Incorrect use of memset_s in keyring_vault.

Fixed the usage of memset_s. The arguments should be:
void memset_s(void *dest, size_t dest_max, int c, size_t n)
where the 2nd argument is size of buffer and the 3rd is
argument is character to fill.

---------------------------------------------------------------------------

PS-7769 - Fix use-after-return error in audit_log_exclude_accounts_validate

---

*Problem:*

`st_mysql_value::val_str` might return a pointer to `buf` which after
the function called is deleted. Therefore the value in `save`, after
reuturnin from the function, is invalid.

In this particular case, the error is not manifesting as val_str`
returns memory allocated with `thd_strmake` and it does not use `buf`.

*Solution:*

Allocate memory with `thd_strmake` so the memory in `save` is not local.

---------------------------------------------------------------------------

Fix test main.bug12969156 when WITH_ASAN=ON

*Problem:*

ASAN complains about stack-buffer-overflow on function `mysql_heartbeat`:

```
==90890==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7fe746d06d14 at pc 0x7fe760f5b017 bp 0x7fe746d06cd0 sp 0x7fe746d06478
WRITE of size 24 at 0x7fe746d06d14 thread T16777215

Address 0x7fe746d06d14 is located in stack of thread T26 at offset 340 in frame
    #0 0x7fe746d0a55c in mysql_heartbeat(void*) /home/yura/ws/percona-server/plugin/daemon_example/daemon_example.cc:62

  This frame has 4 object(s):
    [48, 56) 'result' (line 66)
    [80, 112) '_db_stack_frame_' (line 63)
    [144, 200) 'tm_tmp' (line 67)
    [240, 340) 'buffer' (line 65) <== Memory access at offset 340 overflows this variable
HINT: this may be a false positive if your program uses some custom stack unwind mechanism, swapcontext or vfork
      (longjmp and C++ exceptions *are* supported)
Thread T26 created by T25 here:
    #0 0x7fe760f5f6d5 in __interceptor_pthread_create ../../../../src/libsanitizer/asan/asan_interceptors.cpp:216
    #1 0x557ccbbcb857 in my_thread_create /home/yura/ws/percona-server/mysys/my_thread.c:104
    #2 0x7fe746d0b21a in daemon_example_plugin_init /home/yura/ws/percona-server/plugin/daemon_example/daemon_example.cc:148
    #3 0x557ccb4c69c7 in plugin_initialize /home/yura/ws/percona-server/sql/sql_plugin.cc:1279
    #4 0x557ccb4d19cd in mysql_install_plugin /home/yura/ws/percona-server/sql/sql_plugin.cc:2279
    percona#5 0x557ccb4d218f in Sql_cmd_install_plugin::execute(THD*) /home/yura/ws/percona-server/sql/sql_plugin.cc:4664
    percona#6 0x557ccb47695e in mysql_execute_command(THD*, bool) /home/yura/ws/percona-server/sql/sql_parse.cc:5160
    percona#7 0x557ccb47977c in mysql_parse(THD*, Parser_state*, bool) /home/yura/ws/percona-server/sql/sql_parse.cc:5952
    percona#8 0x557ccb47b6c2 in dispatch_command(THD*, COM_DATA const*, enum_server_command) /home/yura/ws/percona-server/sql/sql_parse.cc:1544
    percona#9 0x557ccb47de1d in do_command(THD*) /home/yura/ws/percona-server/sql/sql_parse.cc:1065
    percona#10 0x557ccb6ac294 in handle_connection /home/yura/ws/percona-server/sql/conn_handler/connection_handler_per_thread.cc:325
    percona#11 0x557ccbbfabb0 in pfs_spawn_thread /home/yura/ws/percona-server/storage/perfschema/pfs.cc:2198
    percona#12 0x7fe760ab544f in start_thread nptl/pthread_create.c:473
```

The reason is that `my_thread_cancel` is used to finish the daemon thread. This is not and orderly way of finishing the thread. ASAN does not register the stack variables are not used anymore which generates the error above.

This is a benign error as all the variables are on the stack.

*Solution*:

Finish the thread in orderly way by using a signalling variable.

---------------------------------------------------------------------------

PS-8204: Fix XML escape rules for audit plugin

https://jira.percona.com/browse/PS-8204

There was a wrong length specified for some XML
escape rules. As a result of this terminating null symbol from
replacement rule was copied into resulting string. This lead to
quer text truncation in audit log file.
In addition added empty replacement rules for '\b' and 'f' symbols
which just remove them from resulting string. These symboles are
not supported in XML 1.0.

---------------------------------------------------------------------------

PS-8854: Add main.percona_udf MTR test

Add a test to check FNV1A_64, FNV_64, and MURMUR_HASH user-defined functions.
VarunNagaraju pushed a commit that referenced this pull request Jun 12, 2024
…n read() syscall over network

https://jira.percona.com/browse/PS-8592

Description
-----------
GR suffered from problems caused by the security probes and network scanner
processes connecting to the group replication communication port. This usually
is not a problem, but poses a serious threat when another member tries to join
the cluster by initialting a connection to the member which is affected by
external processes using the port dedicated for group communication for longer
durations.

On such activites by external processes, the SSL enabled server stalled forever
on the SSL_accept() call waiting for handshake data. Below is the stacktrace:

    Thread 55 (Thread 0x7f7bb77ff700 (LWP 2198598)):
    #0 in read ()
    #1 in sock_read ()
    #2 in BIO_read ()
    #3 in ssl23_read_bytes ()
    #4 in ssl23_get_client_hello ()
    percona#5 in ssl23_accept ()
    percona#6 in xcom_tcp_server_startup(Xcom_network_provider*) ()

When the server stalled in the above path forever, it prohibited other members
to join the cluster resulting in the following messages on the joiner server's
logs.

    [ERROR] [MY-011640] [Repl] Plugin group_replication reported: 'Timeout on wait for view after joining group'
    [ERROR] [MY-011735] [Repl] Plugin group_replication reported: '[GCS] The member is already leaving or joining a group.'

Solution
--------
This patch adds two new variables

1. group_replication_xcom_ssl_socket_timeout

   It is a file-descriptor level timeout in seconds for both accept() and
   SSL_accept() calls when group replication is listening on the xcom port.
   When set to a valid value, say for example 5 seconds, both accept() and
   SSL_accept() return after 5 seconds. The default value has been set to 0
   (waits infinitely) for backward compatibility. This variable is effective
   only when GR is configred with SSL.

2. group_replication_xcom_ssl_accept_retries

   It defines the number of retries to be performed before closing the socket.
   For each retry the server thread calls SSL_accept()  with timeout defined by
   the group_replication_xcom_ssl_socket_timeout for the SSL handshake process
   once the connection has been accepted by the first accept() call. The
   default value has been set to 10. This variable is effective only when GR is
   configred with SSL.

Note:
- Both of the above variables are dynamically configurable, but will become
  effective only on START GROUP_REPLICATION.

-------------------------------------------------------------------------------

PS-8844: Fix the failing main.mysqldump_gtid_purged

https://jira.percona.com/browse/PS-8844

This patch fixes the test failure of main.mysqldump_gtid_purged that
failed due to the uninitialized variable $redirect_stderr in the
start_proc_in_background.inc.
VarunNagaraju pushed a commit that referenced this pull request Jun 12, 2024
…ocal DDL

         executed

https://perconadev.atlassian.net/browse/PS-9018

Problem
-------
In high concurrency scenarios, MySQL replica can enter into a deadlock due to a
race condition between the replica applier thread and the client thread
performing a binlog group commit.

Analysis
--------
It needs at least 3 threads for this deadlock to happen

1. One client thread
2. Two replica applier threads

How this deadlock happens?
--------------------------
0. Binlog is enabled on replica, but log_replica_updates is disabled.

1. Initially, both "Commit Order" and "Binlog Flush" queues are empty.

2. Replica applier thread 1 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

3. Since both "Commit Order" and "Binlog Flush" queues are empty, the applier
   thread 1

   3.1. Becomes leader (In Commit_stage_manager::enroll_for()).

   3.2. Registers in the commit order queue.

   3.3. Acquires the lock MYSQL_BIN_LOG::LOCK_log.

   3.4. Commit Order queue is emptied, but the lock MYSQL_BIN_LOG::LOCK_log is
        not yet released.

   NOTE: SE commit for applier thread is already done by the time it reaches
         here.

4. Replica applier thread 2 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

5. Since the "Commit Order" queue is empty (emptied by applier thread 1 in 3.4), the
   applier thread 2

   5.1. Becomes leader (In Commit_stage_manager::enroll_for())

   5.2. Registers in the commit order queue.

   5.3. Tries to acquire the lock MYSQL_BIN_LOG::LOCK_log. Since it is held by applier
        thread 1 it will wait until the lock is released.

6. Client thread enters the group commit pipeline to register in the
   "Binlog Flush" queue.

7. Since "Commit Order" queue is not empty (there is applier thread 2 in the
   queue), it enters the conditional wait `m_stage_cond_leader` with an
   intention to become the leader for both the "Binlog Flush" and
   "Commit Order" queues.

8. Applier thread 1 releases the lock MYSQL_BIN_LOG::LOCK_log and proceeds to update
   the GTID by calling gtid_state->update_commit_group() from
   Commit_order_manager::flush_engine_and_signal_threads().

9. Applier thread 2 acquires the lock MYSQL_BIN_LOG::LOCK_log.

   9.1. It checks if there is any thread waiting in the "Binlog Flush" queue
        to become the leader. Here it finds the client thread waiting to be
        the leader.

   9.2. It releases the lock MYSQL_BIN_LOG::LOCK_log and signals on the
        cond_var `m_stage_cond_leader` and enters a conditional wait until the
        thread's `tx_commit_pending` is set to false by the client thread
       (will be done in the
       Commit_stage_manager::process_final_stage_for_ordered_commit_group()
       called by client thread from fetch_and_process_flush_stage_queue()).

10. The client thread wakes up from the cond_var `m_stage_cond_leader`.  The
    thread has now become a leader and it is its responsibility to update GTID
    of applier thread 2.

    10.1. It acquires the lock MYSQL_BIN_LOG::LOCK_log.

    10.2. Returns from `enroll_for()` and proceeds to process the
          "Commit Order" and "Binlog Flush" queues.

    10.3. Fetches the "Commit Order" and "Binlog Flush" queues.

    10.4. Performs the storage engine flush by calling ha_flush_logs() from
          fetch_and_process_flush_stage_queue().

    10.5. Proceeds to update the GTID of threads in "Commit Order" queue by
          calling gtid_state->update_commit_group() from
          Commit_stage_manager::process_final_stage_for_ordered_commit_group().

11. At this point, we will have

    - Client thread performing GTID update on behalf if applier thread 2 (from step 10.5), and
    - Applier thread 1 performing GTID update for itself (from step 8).

    Due to the lack of proper synchronization between the above two threads,
    there exists a time window where both threads can call
    gtid_state->update_commit_group() concurrently.

    In subsequent steps, both threads simultaneously try to modify the contents
    of the array `commit_group_sidnos` which is used to track the lock status of
    sidnos. This concurrent access to `update_commit_group()` can cause a
    lock-leak resulting in one thread acquiring the sidno lock and not
    releasing at all.

-----------------------------------------------------------------------------------------------------------
Client thread                                           Applier Thread 1
-----------------------------------------------------------------------------------------------------------
update_commit_group() => global_sid_lock->rdlock();     update_commit_group() => global_sid_lock->rdlock();

calls update_gtids_impl_lock_sidnos()                   calls update_gtids_impl_lock_sidnos()

set commit_group_sidno[2] = true                        set commit_group_sidno[2] = true

                                                        lock_sidno(2) -> successful

lock_sidno(2) -> waits

                                                        update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

                                                        if (commit_group_sidnos[2]) {
                                                          unlock_sidno(2);
                                                          commit_group_sidnos[2] = false;
                                                        }

                                                        Applier thread continues..

lock_sidno(2) -> successful

update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

if (commit_group_sidnos[2]) { <=== this check fails and lock is not released.
  unlock_sidno(2);
  commit_group_sidnos[2] = false;
}

Client thread continues without releasing the lock
-----------------------------------------------------------------------------------------------------------

12. As the above lock-leak can also happen the other way i.e, the applier
    thread fails to unlock, there can be different consequences hereafter.

13. If the client thread continues without releasing the lock, then at a later
    stage, it can enter into a deadlock with the applier thread performing a
    GTID update with stack trace.

    Client_thread
    -------------
    #1  __GI___lll_lock_wait
    #2  ___pthread_mutex_lock
    #3  native_mutex_lock                                       <= waits for commit lock while holding sidno lock
    #4  Commit_stage_manager::enroll_for
    percona#5  MYSQL_BIN_LOG::change_stage
    percona#6  MYSQL_BIN_LOG::ordered_commit
    percona#7  MYSQL_BIN_LOG::commit
    percona#8  ha_commit_trans
    percona#9  trans_commit_implicit
    percona#10 mysql_create_like_table
    percona#11 Sql_cmd_create_table::execute
    percona#12 mysql_execute_command
    percona#13 dispatch_sql_command

    Applier thread
    --------------
    #1  ___pthread_mutex_lock
    #2  native_mutex_lock
    #3  safe_mutex_lock
    #4  Gtid_state::update_gtids_impl_lock_sidnos               <= waits for sidno lock
    percona#5  Gtid_state::update_commit_group
    percona#6  Commit_order_manager::flush_engine_and_signal_threads   <= acquires commit lock here
    percona#7  Commit_order_manager::finish
    percona#8  Commit_order_manager::wait_and_finish
    percona#9  ha_commit_low
    percona#10 trx_coordinator::commit_in_engines
    percona#11 MYSQL_BIN_LOG::commit
    percona#12 ha_commit_trans
    percona#13 trans_commit
    percona#14 Xid_log_event::do_commit
    percona#15 Xid_apply_log_event::do_apply_event_worker
    percona#16 Slave_worker::slave_worker_exec_event
    percona#17 slave_worker_exec_job_group
    percona#18 handle_slave_worker

14. If the applier thread continues without releasing the lock, then at a later
    stage, it can perform recursive locking while setting the GTID for the next
    transaction (in set_gtid_next()).

    In debug builds the above case hits the assertion
    `safe_mutex_assert_not_owner()` meaning the lock is already acquired by the
    replica applier thread when it tries to re-acquire the lock.

Solution
--------
In the above problematic example, when seen from each thread
individually, we can conclude that there is no problem in the order of lock
acquisition, thus there is no need to change the lock order.

However, the root cause for this problem is that multiple threads can
concurrently access to the array `Gtid_state::commit_group_sidnos`.

In its initial implementation, it was expected that threads should
hold the `MYSQL_BIN_LOG::LOCK_commit` before modifying its contents. But it
was not considered when upstream implemented WL#7846 (MTS:
slave-preserve-commit-order when log-slave-updates/binlog is disabled).

With this patch, we now ensure that `MYSQL_BIN_LOG::LOCK_commit` is acquired
when the client thread (binlog flush leader) when it tries to perform GTID
update on behalf of threads waiting in "Commit Order" queue, thus providing a
guarantee that `Gtid_state::commit_group_sidnos` array is never accessed
without the protection of `MYSQL_BIN_LOG::LOCK_commit`.
VarunNagaraju pushed a commit that referenced this pull request Jun 12, 2024
Upstream commit ID : fb-mysql-5.6.35/8cb1dc836b68f1f13e8b2655b2b8cb2d57f400b3
PS-5217 : Merge fb-prod201803

Summary:
Original report: https://jira.mariadb.org/browse/MDEV-15816

To reproduce this bug just following below steps,

client 1:
USE test;
CREATE TABLE t1 (i INT) ENGINE=MyISAM;
HANDLER t1 OPEN h;
CREATE TABLE t2 (i INT) ENGINE=RocksDB;
LOCK TABLES t2 WRITE;

client 2:
FLUSH TABLES WITH READ LOCK;

client 1:
INSERT INTO t2 VALUES (1);

So client 1 acquired the lock and set m_lock_rows = RDB_LOCK_WRITE.
Then client 2 calls store_lock(TL_IGNORE) and m_lock_rows was wrongly
set to RDB_LOCK_NONE, as below

```
 #0  myrocks::ha_rocksdb::store_lock (this=0x7fffbc03c7c8, thd=0x7fffc0000ba0, to=0x7fffc0011220, lock_type=TL_IGNORE)
 #1  get_lock_data (thd=0x7fffc0000ba0, table_ptr=0x7fffe84b7d20, count=1, flags=2)
 #2  mysql_lock_abort_for_thread (thd=0x7fffc0000ba0, table=0x7fffbc03bbc0)
 #3  THD::notify_shared_lock (this=0x7fffc0000ba0, ctx_in_use=0x7fffbc000bd8, needs_thr_lock_abort=true)
 #4  MDL_lock::notify_conflicting_locks (this=0x555557a82380, ctx=0x7fffc0000cc8)
 percona#5  MDL_context::acquire_lock (this=0x7fffc0000cc8, mdl_request=0x7fffe84b8350, lock_wait_timeout=2)
 percona#6  Global_read_lock::lock_global_read_lock (this=0x7fffc0003fe0, thd=0x7fffc0000ba0)
```

Finally, client 1 "INSERT INTO..." hits the Assertion 'm_lock_rows == RDB_LOCK_WRITE'
failed in myrocks::ha_rocksdb::write_row()

Fix this bug by not setting m_locks_rows if lock_type == TL_IGNORE.

Closes facebook/mysql-5.6#838
Pull Request resolved: facebook/mysql-5.6#871

Differential Revision: D9417382

Pulled By: lth

fbshipit-source-id: c36c164e06c
VarunNagaraju pushed a commit that referenced this pull request Jun 12, 2024
PS-5741: Incorrect use of memset_s in keyring_vault.

Fixed the usage of memset_s. The arguments should be:
void memset_s(void *dest, size_t dest_max, int c, size_t n)
where the 2nd argument is size of buffer and the 3rd is
argument is character to fill.

---------------------------------------------------------------------------

PS-7769 - Fix use-after-return error in audit_log_exclude_accounts_validate

---

*Problem:*

`st_mysql_value::val_str` might return a pointer to `buf` which after
the function called is deleted. Therefore the value in `save`, after
reuturnin from the function, is invalid.

In this particular case, the error is not manifesting as val_str`
returns memory allocated with `thd_strmake` and it does not use `buf`.

*Solution:*

Allocate memory with `thd_strmake` so the memory in `save` is not local.

---------------------------------------------------------------------------

Fix test main.bug12969156 when WITH_ASAN=ON

*Problem:*

ASAN complains about stack-buffer-overflow on function `mysql_heartbeat`:

```
==90890==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7fe746d06d14 at pc 0x7fe760f5b017 bp 0x7fe746d06cd0 sp 0x7fe746d06478
WRITE of size 24 at 0x7fe746d06d14 thread T16777215

Address 0x7fe746d06d14 is located in stack of thread T26 at offset 340 in frame
    #0 0x7fe746d0a55c in mysql_heartbeat(void*) /home/yura/ws/percona-server/plugin/daemon_example/daemon_example.cc:62

  This frame has 4 object(s):
    [48, 56) 'result' (line 66)
    [80, 112) '_db_stack_frame_' (line 63)
    [144, 200) 'tm_tmp' (line 67)
    [240, 340) 'buffer' (line 65) <== Memory access at offset 340 overflows this variable
HINT: this may be a false positive if your program uses some custom stack unwind mechanism, swapcontext or vfork
      (longjmp and C++ exceptions *are* supported)
Thread T26 created by T25 here:
    #0 0x7fe760f5f6d5 in __interceptor_pthread_create ../../../../src/libsanitizer/asan/asan_interceptors.cpp:216
    #1 0x557ccbbcb857 in my_thread_create /home/yura/ws/percona-server/mysys/my_thread.c:104
    #2 0x7fe746d0b21a in daemon_example_plugin_init /home/yura/ws/percona-server/plugin/daemon_example/daemon_example.cc:148
    #3 0x557ccb4c69c7 in plugin_initialize /home/yura/ws/percona-server/sql/sql_plugin.cc:1279
    #4 0x557ccb4d19cd in mysql_install_plugin /home/yura/ws/percona-server/sql/sql_plugin.cc:2279
    percona#5 0x557ccb4d218f in Sql_cmd_install_plugin::execute(THD*) /home/yura/ws/percona-server/sql/sql_plugin.cc:4664
    percona#6 0x557ccb47695e in mysql_execute_command(THD*, bool) /home/yura/ws/percona-server/sql/sql_parse.cc:5160
    percona#7 0x557ccb47977c in mysql_parse(THD*, Parser_state*, bool) /home/yura/ws/percona-server/sql/sql_parse.cc:5952
    percona#8 0x557ccb47b6c2 in dispatch_command(THD*, COM_DATA const*, enum_server_command) /home/yura/ws/percona-server/sql/sql_parse.cc:1544
    percona#9 0x557ccb47de1d in do_command(THD*) /home/yura/ws/percona-server/sql/sql_parse.cc:1065
    percona#10 0x557ccb6ac294 in handle_connection /home/yura/ws/percona-server/sql/conn_handler/connection_handler_per_thread.cc:325
    percona#11 0x557ccbbfabb0 in pfs_spawn_thread /home/yura/ws/percona-server/storage/perfschema/pfs.cc:2198
    percona#12 0x7fe760ab544f in start_thread nptl/pthread_create.c:473
```

The reason is that `my_thread_cancel` is used to finish the daemon thread. This is not and orderly way of finishing the thread. ASAN does not register the stack variables are not used anymore which generates the error above.

This is a benign error as all the variables are on the stack.

*Solution*:

Finish the thread in orderly way by using a signalling variable.

---------------------------------------------------------------------------

PS-8204: Fix XML escape rules for audit plugin

https://jira.percona.com/browse/PS-8204

There was a wrong length specified for some XML
escape rules. As a result of this terminating null symbol from
replacement rule was copied into resulting string. This lead to
quer text truncation in audit log file.
In addition added empty replacement rules for '\b' and 'f' symbols
which just remove them from resulting string. These symboles are
not supported in XML 1.0.

---------------------------------------------------------------------------

PS-8854: Add main.percona_udf MTR test

Add a test to check FNV1A_64, FNV_64, and MURMUR_HASH user-defined functions.
VarunNagaraju pushed a commit that referenced this pull request Jun 12, 2024
…n read() syscall over network

https://jira.percona.com/browse/PS-8592

Description
-----------
GR suffered from problems caused by the security probes and network scanner
processes connecting to the group replication communication port. This usually
is not a problem, but poses a serious threat when another member tries to join
the cluster by initialting a connection to the member which is affected by
external processes using the port dedicated for group communication for longer
durations.

On such activites by external processes, the SSL enabled server stalled forever
on the SSL_accept() call waiting for handshake data. Below is the stacktrace:

    Thread 55 (Thread 0x7f7bb77ff700 (LWP 2198598)):
    #0 in read ()
    #1 in sock_read ()
    #2 in BIO_read ()
    #3 in ssl23_read_bytes ()
    #4 in ssl23_get_client_hello ()
    percona#5 in ssl23_accept ()
    percona#6 in xcom_tcp_server_startup(Xcom_network_provider*) ()

When the server stalled in the above path forever, it prohibited other members
to join the cluster resulting in the following messages on the joiner server's
logs.

    [ERROR] [MY-011640] [Repl] Plugin group_replication reported: 'Timeout on wait for view after joining group'
    [ERROR] [MY-011735] [Repl] Plugin group_replication reported: '[GCS] The member is already leaving or joining a group.'

Solution
--------
This patch adds two new variables

1. group_replication_xcom_ssl_socket_timeout

   It is a file-descriptor level timeout in seconds for both accept() and
   SSL_accept() calls when group replication is listening on the xcom port.
   When set to a valid value, say for example 5 seconds, both accept() and
   SSL_accept() return after 5 seconds. The default value has been set to 0
   (waits infinitely) for backward compatibility. This variable is effective
   only when GR is configred with SSL.

2. group_replication_xcom_ssl_accept_retries

   It defines the number of retries to be performed before closing the socket.
   For each retry the server thread calls SSL_accept()  with timeout defined by
   the group_replication_xcom_ssl_socket_timeout for the SSL handshake process
   once the connection has been accepted by the first accept() call. The
   default value has been set to 10. This variable is effective only when GR is
   configred with SSL.

Note:
- Both of the above variables are dynamically configurable, but will become
  effective only on START GROUP_REPLICATION.

-------------------------------------------------------------------------------

PS-8844: Fix the failing main.mysqldump_gtid_purged

https://jira.percona.com/browse/PS-8844

This patch fixes the test failure of main.mysqldump_gtid_purged that
failed due to the uninitialized variable $redirect_stderr in the
start_proc_in_background.inc.
VarunNagaraju pushed a commit that referenced this pull request Jun 12, 2024
…ocal DDL

         executed

https://perconadev.atlassian.net/browse/PS-9018

Problem
-------
In high concurrency scenarios, MySQL replica can enter into a deadlock due to a
race condition between the replica applier thread and the client thread
performing a binlog group commit.

Analysis
--------
It needs at least 3 threads for this deadlock to happen

1. One client thread
2. Two replica applier threads

How this deadlock happens?
--------------------------
0. Binlog is enabled on replica, but log_replica_updates is disabled.

1. Initially, both "Commit Order" and "Binlog Flush" queues are empty.

2. Replica applier thread 1 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

3. Since both "Commit Order" and "Binlog Flush" queues are empty, the applier
   thread 1

   3.1. Becomes leader (In Commit_stage_manager::enroll_for()).

   3.2. Registers in the commit order queue.

   3.3. Acquires the lock MYSQL_BIN_LOG::LOCK_log.

   3.4. Commit Order queue is emptied, but the lock MYSQL_BIN_LOG::LOCK_log is
        not yet released.

   NOTE: SE commit for applier thread is already done by the time it reaches
         here.

4. Replica applier thread 2 enters the group commit pipeline to register in the
   "Commit Order" queue since `log-replica-updates` is disabled on the replica
   node.

5. Since the "Commit Order" queue is empty (emptied by applier thread 1 in 3.4), the
   applier thread 2

   5.1. Becomes leader (In Commit_stage_manager::enroll_for())

   5.2. Registers in the commit order queue.

   5.3. Tries to acquire the lock MYSQL_BIN_LOG::LOCK_log. Since it is held by applier
        thread 1 it will wait until the lock is released.

6. Client thread enters the group commit pipeline to register in the
   "Binlog Flush" queue.

7. Since "Commit Order" queue is not empty (there is applier thread 2 in the
   queue), it enters the conditional wait `m_stage_cond_leader` with an
   intention to become the leader for both the "Binlog Flush" and
   "Commit Order" queues.

8. Applier thread 1 releases the lock MYSQL_BIN_LOG::LOCK_log and proceeds to update
   the GTID by calling gtid_state->update_commit_group() from
   Commit_order_manager::flush_engine_and_signal_threads().

9. Applier thread 2 acquires the lock MYSQL_BIN_LOG::LOCK_log.

   9.1. It checks if there is any thread waiting in the "Binlog Flush" queue
        to become the leader. Here it finds the client thread waiting to be
        the leader.

   9.2. It releases the lock MYSQL_BIN_LOG::LOCK_log and signals on the
        cond_var `m_stage_cond_leader` and enters a conditional wait until the
        thread's `tx_commit_pending` is set to false by the client thread
       (will be done in the
       Commit_stage_manager::process_final_stage_for_ordered_commit_group()
       called by client thread from fetch_and_process_flush_stage_queue()).

10. The client thread wakes up from the cond_var `m_stage_cond_leader`.  The
    thread has now become a leader and it is its responsibility to update GTID
    of applier thread 2.

    10.1. It acquires the lock MYSQL_BIN_LOG::LOCK_log.

    10.2. Returns from `enroll_for()` and proceeds to process the
          "Commit Order" and "Binlog Flush" queues.

    10.3. Fetches the "Commit Order" and "Binlog Flush" queues.

    10.4. Performs the storage engine flush by calling ha_flush_logs() from
          fetch_and_process_flush_stage_queue().

    10.5. Proceeds to update the GTID of threads in "Commit Order" queue by
          calling gtid_state->update_commit_group() from
          Commit_stage_manager::process_final_stage_for_ordered_commit_group().

11. At this point, we will have

    - Client thread performing GTID update on behalf if applier thread 2 (from step 10.5), and
    - Applier thread 1 performing GTID update for itself (from step 8).

    Due to the lack of proper synchronization between the above two threads,
    there exists a time window where both threads can call
    gtid_state->update_commit_group() concurrently.

    In subsequent steps, both threads simultaneously try to modify the contents
    of the array `commit_group_sidnos` which is used to track the lock status of
    sidnos. This concurrent access to `update_commit_group()` can cause a
    lock-leak resulting in one thread acquiring the sidno lock and not
    releasing at all.

-----------------------------------------------------------------------------------------------------------
Client thread                                           Applier Thread 1
-----------------------------------------------------------------------------------------------------------
update_commit_group() => global_sid_lock->rdlock();     update_commit_group() => global_sid_lock->rdlock();

calls update_gtids_impl_lock_sidnos()                   calls update_gtids_impl_lock_sidnos()

set commit_group_sidno[2] = true                        set commit_group_sidno[2] = true

                                                        lock_sidno(2) -> successful

lock_sidno(2) -> waits

                                                        update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

                                                        if (commit_group_sidnos[2]) {
                                                          unlock_sidno(2);
                                                          commit_group_sidnos[2] = false;
                                                        }

                                                        Applier thread continues..

lock_sidno(2) -> successful

update_gtids_impl_own_gtid() -> Add the thd->owned_gtid in `executed_gtids()`

if (commit_group_sidnos[2]) { <=== this check fails and lock is not released.
  unlock_sidno(2);
  commit_group_sidnos[2] = false;
}

Client thread continues without releasing the lock
-----------------------------------------------------------------------------------------------------------

12. As the above lock-leak can also happen the other way i.e, the applier
    thread fails to unlock, there can be different consequences hereafter.

13. If the client thread continues without releasing the lock, then at a later
    stage, it can enter into a deadlock with the applier thread performing a
    GTID update with stack trace.

    Client_thread
    -------------
    #1  __GI___lll_lock_wait
    #2  ___pthread_mutex_lock
    #3  native_mutex_lock                                       <= waits for commit lock while holding sidno lock
    #4  Commit_stage_manager::enroll_for
    percona#5  MYSQL_BIN_LOG::change_stage
    percona#6  MYSQL_BIN_LOG::ordered_commit
    percona#7  MYSQL_BIN_LOG::commit
    percona#8  ha_commit_trans
    percona#9  trans_commit_implicit
    percona#10 mysql_create_like_table
    percona#11 Sql_cmd_create_table::execute
    percona#12 mysql_execute_command
    percona#13 dispatch_sql_command

    Applier thread
    --------------
    #1  ___pthread_mutex_lock
    #2  native_mutex_lock
    #3  safe_mutex_lock
    #4  Gtid_state::update_gtids_impl_lock_sidnos               <= waits for sidno lock
    percona#5  Gtid_state::update_commit_group
    percona#6  Commit_order_manager::flush_engine_and_signal_threads   <= acquires commit lock here
    percona#7  Commit_order_manager::finish
    percona#8  Commit_order_manager::wait_and_finish
    percona#9  ha_commit_low
    percona#10 trx_coordinator::commit_in_engines
    percona#11 MYSQL_BIN_LOG::commit
    percona#12 ha_commit_trans
    percona#13 trans_commit
    percona#14 Xid_log_event::do_commit
    percona#15 Xid_apply_log_event::do_apply_event_worker
    percona#16 Slave_worker::slave_worker_exec_event
    percona#17 slave_worker_exec_job_group
    percona#18 handle_slave_worker

14. If the applier thread continues without releasing the lock, then at a later
    stage, it can perform recursive locking while setting the GTID for the next
    transaction (in set_gtid_next()).

    In debug builds the above case hits the assertion
    `safe_mutex_assert_not_owner()` meaning the lock is already acquired by the
    replica applier thread when it tries to re-acquire the lock.

Solution
--------
In the above problematic example, when seen from each thread
individually, we can conclude that there is no problem in the order of lock
acquisition, thus there is no need to change the lock order.

However, the root cause for this problem is that multiple threads can
concurrently access to the array `Gtid_state::commit_group_sidnos`.

In its initial implementation, it was expected that threads should
hold the `MYSQL_BIN_LOG::LOCK_commit` before modifying its contents. But it
was not considered when upstream implemented WL#7846 (MTS:
slave-preserve-commit-order when log-slave-updates/binlog is disabled).

With this patch, we now ensure that `MYSQL_BIN_LOG::LOCK_commit` is acquired
when the client thread (binlog flush leader) when it tries to perform GTID
update on behalf of threads waiting in "Commit Order" queue, thus providing a
guarantee that `Gtid_state::commit_group_sidnos` array is never accessed
without the protection of `MYSQL_BIN_LOG::LOCK_commit`.
VarunNagaraju pushed a commit that referenced this pull request Jun 14, 2024
When built with ASAN, a use-after-free is reported for the TcpPortPool.

AddressSanitizer: heap-use-after-free on address 0x60200019f190 at pc
0x00000076a18d bp 0x7fff51e7d1d0 sp 0x7fff51e7d1c0

    #4 0x770b73 in UniqueId::ProcessUniqueIds::erase(unsigned int)
       ../router/tests/helpers/tcp_port_pool.h:112
    percona#5 0x770c48 in UniqueId::~UniqueId()
       ../router/tests/helpers/tcp_port_pool.cc:234
    ...
    percona#12 0x82faa3 in testing::UnitTest::~UnitTest()
	../extra/googletest/googletest-release-1.12.0/googletest/src/gtest.cc:5496
    percona#13 0x7f5fe085ace8 in __run_exit_handlers (/lib64/libc.so.6+0x39ce8)

0x60200019f190 is located 0 bytes inside of 16-byte region
[0x60200019f190,0x60200019f1a0)
freed by thread T0 here:
    #0 0x7f5fe3cbd10f in operator delete(void*, unsigned long)
       (/lib64/libasan.so.6+0xb710f)
    #1 0x7f5fe085ace8 in __run_exit_handlers (/lib64/libc.so.6+0x39ce8)

Background
==========

__run_exit_handlers destroys "static" and "global" variables in reverse
order of their creation.

googletest's unit-tests are a static, and the TcpPortPool also has
ProcessUniqueId's which contains the process-wide unique-ids.

At construct: unittest -> tcp-port-pool -> proces-unique-ids
At destruct : process-unique-ids -> tcp-port-pool -> 💥

The use-after-free happens as the process-unique-ids static is
destructed before the tcp-port-pool which tries to its Ids from the
process-unique-ids.

Change
======

- extend the lifetime of the process-unique-ids to after the last use of
  the tcp-port-pool via a std::shared_ptr<>

Change-Id: I75b8b781e1d240f18ca72f2c86182639a7699f06
VarunNagaraju pushed a commit that referenced this pull request Jun 14, 2024
…nt on Windows and posix [#4]

Introduce quoting functions suitable for POSIX shell (sh) and running
C/C++ programs on Windows via CMD.EXE.

Use them when running a program via ssh. A simple heuristic to guess the
kind of quoting needed on remote host is. If a \ appears in any argument
use the quoting function for Windows. If / appears in any argument use
the quoting function for POSIX.

Change-Id: I851eb3da22d716d181319e825e888631cd16aeb7
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant