Skip to content

Commit

Permalink
Fix PEP 8 violations in main.py and test_main.py
Browse files Browse the repository at this point in the history
  • Loading branch information
devin-ai-integration[bot] committed Aug 20, 2024
1 parent e8c6dd8 commit 135b010
Show file tree
Hide file tree
Showing 2 changed files with 109 additions and 96 deletions.
169 changes: 89 additions & 80 deletions src/main.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,10 @@
# Create a basic project structure for Astra8
# Implement advanced features for 7G and 8G development
"""
Astra8: Advanced 7G and 8G Network Development Project
This module implements advanced features for 7G and 8G network development,
including network simulation, AI-driven planning, quantum computing tasks,
satellite communication, spectrum management, and data processing.
"""

# Standard library imports
import logging
Expand Down Expand Up @@ -58,26 +63,28 @@ def __init__(self):
def create_network_graph(self) -> nx.Graph:
try:
self.graph.add_nodes_from(range(1, 11)) # Add 10 nodes
edges = [(1, 2), (1, 3), (2, 4), (3, 5), (4, 6), (5, 7),
(6, 8), (7, 9), (8, 10), (9, 10)]
edges = [
(1, 2), (1, 3), (2, 4), (3, 5), (4, 6), (5, 7),
(6, 8), (7, 9), (8, 10), (9, 10)
]
self.graph.add_edges_from(edges)
logger.info("Network graph created successfully")
return self.graph
except Exception as e:
logger.error(f"Error creating network graph: {str(e)}")
logger.error("Error creating network graph: %s", str(e))
raise

def simulate_network(self) -> List[int]:
try:
logger.info("Running network simulation...")
shortest_path = nx.shortest_path(self.graph, 1, 10)
logger.info(f"Shortest path from node 1 to 10: {shortest_path}")
logger.info("Shortest path from node 1 to 10: %s", shortest_path)
return shortest_path
except nx.NetworkXNoPath:
logger.error("No path exists between nodes 1 and 10")
return []
except Exception as e:
logger.error(f"Error simulating network: {str(e)}")
logger.error("Error simulating network: %s", str(e))
raise

def ai_network_planning(
Expand All @@ -87,25 +94,17 @@ def ai_network_planning(
) -> Tuple[tf.keras.Model, tf.keras.callbacks.History, np.ndarray]:
try:
logger.info("Running advanced AI-driven network planning...")

model = self._create_model()
X = self._generate_input_data(nodes, connections)
y = self._generate_output_data(len(nodes))

history = model.fit(
X, y, epochs=20, validation_split=0.2, verbose=0
)
history = model.fit(X, y, epochs=20, validation_split=0.2, verbose=0)
logger.info("Advanced AI model trained for network planning")

new_nodes = np.random.rand(10, 4) # Simulating 10 new network nodes
deployment_plan = self.simulate_deployment(model, new_nodes)
logger.info(
f"Deployment plan generated for {len(new_nodes)} nodes"
)

logger.info("Deployment plan generated for %d nodes", len(new_nodes))
return model, history, deployment_plan
except Exception as e:
logger.error(f"Error in AI network planning: {str(e)}")
logger.error("Error in AI network planning: %s", str(e))
raise

@staticmethod
Expand All @@ -116,15 +115,19 @@ def _create_model() -> tf.keras.Model:
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(3, activation='softmax')
])
model.compile(optimizer='adam', loss='categorical_crossentropy',
metrics=['accuracy'])
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy']
)
return model

@staticmethod
def _generate_input_data(nodes: List[int],
connections: List[int]) -> np.ndarray:
return np.array([[n, c, np.random.rand(), np.random.rand()]
for n, c in zip(nodes, connections)])
def _generate_input_data(nodes: List[int], connections: List[int]) -> np.ndarray:
return np.array([
[n, c, np.random.rand(), np.random.rand()]
for n, c in zip(nodes, connections)
])

@staticmethod
def _generate_output_data(num_nodes: int) -> np.ndarray:
Expand All @@ -134,62 +137,66 @@ def _generate_output_data(num_nodes: int) -> np.ndarray:
)

@staticmethod
def simulate_deployment(model: tf.keras.Model,
new_data: np.ndarray) -> np.ndarray:
def simulate_deployment(model: tf.keras.Model, new_data: np.ndarray) -> np.ndarray:
try:
predictions = model.predict(new_data)
return np.argmax(predictions, axis=1)
except Exception as e:
logger.error(f"Error simulating deployment: {str(e)}")
logger.error("Error simulating deployment: %s", str(e))
raise

class QuantumProcessor:
"""Handles quantum computing tasks and result visualization."""

def __init__(self):
self.qc = None
self.result = None

def run_quantum_tasks(self):
"""Execute quantum tasks, including circuit creation and simulation."""
try:
logger.info("Running quantum computing tasks...")

# Create a quantum circuit with 2 qubits
self.qc = QuantumCircuit(2, 2)

# Apply gates
self.qc.h(0) # Hadamard gate on qubit 0
self.qc.cx(0, 1) # CNOT gate with control qubit 0 and target qubit 1

# Measure qubits
self.qc.measure([0, 1], [0, 1])

# Run the quantum circuit on a simulator
backend = Aer.get_backend('qasm_simulator')
job = execute(self.qc, backend, shots=1000)
self.result = job.result()

# Get the measurement results
counts = self.result.get_counts(self.qc)
logger.info(f"Quantum circuit measurement results: {counts}")

# Calculate probabilities and error margins
self._create_quantum_circuit()
self._run_quantum_simulation()
counts = self._get_measurement_results()
probabilities, error_margins = self.calculate_probabilities_and_errors(counts)

# Visualize the results with improvements
self.visualize_quantum_results(probabilities, error_margins)

except Exception as e:
logger.error(f"Error in quantum computing tasks: {str(e)}")
raise

def _create_quantum_circuit(self):
"""Create a quantum circuit with 2 qubits."""
self.qc = QuantumCircuit(2, 2)
self.qc.h(0) # Hadamard gate on qubit 0
self.qc.cx(0, 1) # CNOT gate with control qubit 0 and target qubit 1
self.qc.measure([0, 1], [0, 1])

def _run_quantum_simulation(self):
"""Run the quantum circuit on a simulator."""
backend = Aer.get_backend('qasm_simulator')
job = execute(self.qc, backend, shots=1000)
self.result = job.result()

def _get_measurement_results(self):
"""Get and log the measurement results."""
counts = self.result.get_counts(self.qc)
logger.info(f"Quantum circuit measurement results: {counts}")
return counts

@staticmethod
def calculate_probabilities_and_errors(counts):
"""Calculate probabilities and error margins from measurement counts."""
total_shots = sum(counts.values())
probabilities = {k: v / total_shots for k, v in counts.items()}
error_margins = {k: np.sqrt(v * (1 - v) / total_shots) for k, v in probabilities.items()}
error_margins = {
k: np.sqrt(v * (1 - v) / total_shots) for k, v in probabilities.items()
}
return probabilities, error_margins

@staticmethod
def visualize_quantum_results(probabilities: dict, error_margins: dict):
"""Visualize quantum results with a bar plot."""
try:
fig, ax = plt.subplots(figsize=(10, 6))
bar_colors = ['#1f77b4', '#ff7f0e'] # Distinct colors for outcomes
Expand All @@ -202,34 +209,7 @@ def visualize_quantum_results(probabilities: dict, error_margins: dict):
alpha=0.8
)

# Customize the plot
ax.set_xlabel('Measurement Outcome', fontsize=12)
ax.set_ylabel('Probability', fontsize=12)
ax.set_title('Quantum Circuit Results: Bell State Preparation', fontsize=14)
ax.tick_params(axis='both', which='major', labelsize=10)
ax.set_ylim(0, 1) # Set y-axis limit from 0 to 1 for probabilities

# Add value labels on top of each bar
for bar in bars:
height = bar.get_height()
ax.text(
bar.get_x() + bar.get_width() / 2.,
height,
f'{height:.2f}',
ha='center',
va='bottom'
)

# Customize grid and add legend
ax.grid(axis='y', linestyle='--', alpha=0.7)
ax.text(
0.95, 0.95,
'Circuit: H(q0) -> CNOT(q0, q1)',
transform=ax.transAxes,
verticalalignment='top',
horizontalalignment='right',
bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.5)
)
QuantumProcessor._customize_plot(ax, bars)

plt.tight_layout()
plt.savefig("quantum_results.png", dpi=300)
Expand All @@ -239,6 +219,35 @@ def visualize_quantum_results(probabilities: dict, error_margins: dict):
logger.error(f"Error visualizing quantum results: {str(e)}")
raise

@staticmethod
def _customize_plot(ax, bars):
"""Customize the plot with labels, title, and annotations."""
ax.set_xlabel('Measurement Outcome', fontsize=12)
ax.set_ylabel('Probability', fontsize=12)
ax.set_title('Quantum Circuit Results: Bell State Preparation', fontsize=14)
ax.tick_params(axis='both', which='major', labelsize=10)
ax.set_ylim(0, 1) # Set y-axis limit from 0 to 1 for probabilities

for bar in bars:
height = bar.get_height()
ax.text(
bar.get_x() + bar.get_width() / 2.,
height,
f'{height:.2f}',
ha='center',
va='bottom'
)

ax.grid(axis='y', linestyle='--', alpha=0.7)
ax.text(
0.95, 0.95,
'Circuit: H(q0) -> CNOT(q0, q1)',
transform=ax.transAxes,
verticalalignment='top',
horizontalalignment='right',
bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.5)
)

class SatelliteCommunication:
def __init__(self):
self.satellites = None
Expand Down
36 changes: 20 additions & 16 deletions src/test_main.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
"""Unit tests for the main module of the Astra8 project."""

# Standard library imports
from unittest.mock import Mock, MagicMock

Expand All @@ -12,20 +14,20 @@
QuantumProcessor,
SatelliteCommunication,
SpectrumManager,
EdgeComputing
EdgeComputing,
)




def test_main_typical_case(mocker: MockerFixture) -> None:
"""Test the main function under typical conditions."""
# Mock the classes and their methods
mock_network_planner = MagicMock(spec=NetworkPlanner)
mock_network_planner.create_network_graph.return_value = MagicMock()
mock_network_planner.simulate_network.return_value = [1, 2, 4, 6, 8, 10]
mock_network_planner.ai_network_planning.return_value = (
Mock(), Mock(), Mock()
Mock(),
Mock(),
Mock(),
)

mock_quantum_processor = MagicMock(spec=QuantumProcessor)
Expand All @@ -34,11 +36,11 @@ def test_main_typical_case(mocker: MockerFixture) -> None:
mock_edge_computing = MagicMock(spec=EdgeComputing)

# Patch the main module with mocked classes
mocker.patch('main.NetworkPlanner', return_value=mock_network_planner)
mocker.patch('main.QuantumProcessor', return_value=mock_quantum_processor)
mocker.patch('main.SatelliteCommunication', return_value=mock_satellite_comm)
mocker.patch('main.SpectrumManager', return_value=mock_spectrum_manager)
mocker.patch('main.EdgeComputing', return_value=mock_edge_computing)
mocker.patch("main.NetworkPlanner", return_value=mock_network_planner)
mocker.patch("main.QuantumProcessor", return_value=mock_quantum_processor)
mocker.patch("main.SatelliteCommunication", return_value=mock_satellite_comm)
mocker.patch("main.SpectrumManager", return_value=mock_spectrum_manager)
mocker.patch("main.EdgeComputing", return_value=mock_edge_computing)

# Call the main function
main()
Expand All @@ -57,8 +59,10 @@ def test_main_error_handling(mocker: MockerFixture) -> None:
"""Test the main function's error handling capabilities."""
# Mock NetworkPlanner to raise an exception
mock_network_planner = MagicMock(spec=NetworkPlanner)
mock_network_planner.create_network_graph.side_effect = Exception("Network creation failed")
mocker.patch('main.NetworkPlanner', return_value=mock_network_planner)
mock_network_planner.create_network_graph.side_effect = Exception(
"Network creation failed"
)
mocker.patch("main.NetworkPlanner", return_value=mock_network_planner)

# Call the main function and check if it handles the exception
with pytest.raises(Exception) as exc_info:
Expand All @@ -81,11 +85,11 @@ def test_main_edge_case(mocker: MockerFixture) -> None:
mock_edge_computing = MagicMock(spec=EdgeComputing)

# Patch the main module with mocked classes
mocker.patch('main.NetworkPlanner', return_value=mock_network_planner)
mocker.patch('main.QuantumProcessor', return_value=mock_quantum_processor)
mocker.patch('main.SatelliteCommunication', return_value=mock_satellite_comm)
mocker.patch('main.SpectrumManager', return_value=mock_spectrum_manager)
mocker.patch('main.EdgeComputing', return_value=mock_edge_computing)
mocker.patch("main.NetworkPlanner", return_value=mock_network_planner)
mocker.patch("main.QuantumProcessor", return_value=mock_quantum_processor)
mocker.patch("main.SatelliteCommunication", return_value=mock_satellite_comm)
mocker.patch("main.SpectrumManager", return_value=mock_spectrum_manager)
mocker.patch("main.EdgeComputing", return_value=mock_edge_computing)

# Call the main function
main()
Expand Down

0 comments on commit 135b010

Please sign in to comment.