-
Notifications
You must be signed in to change notification settings - Fork 34
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
nkaushik1
committed
Jun 11, 2018
1 parent
f84f5df
commit 35ff28c
Showing
1 changed file
with
106 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
##################################################################################### | ||
# This file is part of VISDA-18 challenge code for the open-set classification track. | ||
# It calculates the per-category and mean accuracy of your predictions | ||
# compared to the ground truth. | ||
# | ||
# Please modify the following paths accordingly when you | ||
# call this function: | ||
# 1. ground_truth_fn: path to the ground truth text file | ||
# 2. predictions_fn: path to the text file with your predictions | ||
# | ||
# or use as | ||
# python eval.py --io <ground_truth_file_name> <predictions_file_name> | ||
##################################################################################### | ||
|
||
from __future__ import division | ||
from __future__ import print_function | ||
import numpy as np | ||
import sys, os, os.path | ||
|
||
class Categories: | ||
def __init__(self, names): | ||
self.names = names | ||
self.num_cat = len(names) | ||
self.acceptable_predictionss = [] | ||
for i in range(len(self.names)): | ||
self.acceptable_predictionss.append(i) | ||
|
||
self.truth = np.zeros(self.num_cat) | ||
self.predictions = np.zeros(self.num_cat) | ||
self.predictions_accuracy = np.zeros(self.num_cat) | ||
|
||
for i in range(self.num_cat): | ||
self.truth[i] = 0 | ||
self.predictions[i] = 0 | ||
self.predictions_accuracy[i] = 0 | ||
|
||
self.mean_predictions_accuracy = 0 | ||
|
||
|
||
########################################################################### | ||
# classification_evaluation | ||
# | ||
# inputs: ground_truth.txt and predictions.txt files | ||
# | ||
# output: per-category and mean accuracies printed in 'scores.txt' | ||
# | ||
########################################################################### | ||
|
||
def classification_evaluation(ground_truth_fn, predictions_fn): | ||
category_names = ['aeroplane', 'bicycle', 'bus', 'car', 'horse', 'knife', 'motorcycle', | ||
'person', 'plant', 'skateboard', 'train', 'truck', 'unknown'] | ||
categs = Categories(category_names) | ||
|
||
with open(ground_truth_fn) as f: | ||
truth = [x.strip('\n') for x in f.readlines()] | ||
f.close() | ||
|
||
with open(predictions_fn) as f: | ||
predictions = [x.strip('\n') for x in f.readlines()] | ||
f.close() | ||
|
||
if len(predictions) == 0: | ||
print('Error: predictions file is empty.') | ||
return | ||
|
||
if len(truth) != len(predictions): | ||
print('Error: predictions file does not contain the same number ' | ||
'of elements as truth file.') | ||
return | ||
|
||
for idx, category in enumerate(truth): | ||
truth_category = int(category) | ||
categs.truth[truth_category] += 1 | ||
predictions_category = int(predictions[idx]) | ||
|
||
if predictions_category not in categs.acceptable_predictionss: | ||
print('Error: predictions file contains invalid entry. Please ' | ||
'check that all category labels are valid and that the ' | ||
'file adheres to the specified format for evaluation.') | ||
return | ||
|
||
if predictions_category == truth_category: | ||
categs.predictions[truth_category] += 1 | ||
|
||
for i in range(categs.num_cat): | ||
if categs.truth[i] != 0: | ||
categs.predictions_accuracy[i] = 100*float(categs.predictions[i]/categs.truth[i]) | ||
|
||
categs.mean_predictions_accuracy = float(np.mean(categs.predictions_accuracy)) | ||
|
||
with open('scores.txt', 'w') as f: | ||
f.write('mean accuracy: ' + str(categs.mean_predictions_accuracy) + '\n\n') | ||
for i in range(len(categs.predictions_accuracy)): | ||
f.write(categs.names[i] + ': ' + str(categs.predictions_accuracy[i]) + '\n\n') | ||
f.close() | ||
|
||
|
||
if __name__ == '__main__': | ||
if '--io' in sys.argv: | ||
args = sys.argv[sys.argv.index('--io')+1:] | ||
ground_truth_fn, predictions_fn = args | ||
else: | ||
ground_truth_fn = 'val_ground_truth.txt' | ||
predictions_fn = 'example_prediction.txt' | ||
|
||
classification_evaluation(ground_truth_fn, predictions_fn) |