The official repository for GCR rerank, a GCN-based reranking method for image re-ID, video re-ID, and image retrieval.
We use python 3.7/torch 1.6/torchvision 0.7.0.
image re-ID: Market, Duke, MSMT, CUHK03
video re-ID: MARS
image retrieval: ROxford, RParis
We provide Market1501/MARS features from reid-strong-baseline at Google Drive.
Run GCRV rerank with basic settings on Market1501
python eval_rerank.py --config_file=config/market.yml
Run PVG only
python eval_rerank.py --config_file=config/market.yml PVG.ENABLE_PVG True GCR.ENABLE_GCR False
Run GCR only
python eval_rerank.py --config_file=config/market.yml PVG.ENABLE_PVG False GCR.ENABLE_GCR True
RUN GCRV on video reid dataset(MARS)
python eval_rerank.py --config_file=config/mars.yml
Run other rerank methods: (baseline, k_reciprocal, ecn, ecn_orig, lbr, qe)
python eval_rerank.py --config_file=config/market.yml COMMON.RERANK_TYPE baseline
State-of-the-art reranking method inlucidng K_reciprocal, ECN, LBR