Skip to content

Why do I get mse=0.91 for the MSLR dataset using DANets? #7

@ghost

Description

I download the code+date from your github, but get mse=0.91, not 0.55.
There is some codes I debug:
(1) in data_util.py, add '.txt'
def svm2pkl(source, save_path):
before:
X_train, y_train = load_svmlight_file(os.path.join(source, 'train'))
X_valid, y_valid = load_svmlight_file(os.path.join(source, 'vali'))
X_test, y_test = load_svmlight_file(os.path.join(source, 'test'))
after:
def svm2pkl(source, save_path):
X_train, y_train = load_svmlight_file(os.path.join(source, 'train.txt'))
X_valid, y_valid = load_svmlight_file(os.path.join(source, 'vali.txt'))
X_test, y_test = load_svmlight_file(os.path.join(source, 'test.txt'))
(2)in deault.py, add 'cfg.fit.weight_decay = 1e-5','cfg.fit.schedule_step = 20'.
As I do regression task, when I run main.py, the Keyerror: weight_decay ,Keyerror: schedule_step .I can't find these two parameters define in deault.py ,MSLR.yaml, main.py, so I add 'cfg.fit.weight_decay = 1e-5','cfg.fit.schedule_step = 20' in deault.py.
(3)Run codes by using python predict.py -d [dataset_name] -m [model_file_path] -g [gpu_id] where the best.pth path is already specified. I don't get the mean: Replace the resume_dir path with the file path containing your trained model/weight. Does it mean set the resume_dir path to the best.pth path?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions