ML/IoT/DevOps Hands on workshop
Day 1 - full instructions here
- 09:30-10:00 Workshop overview, scope, expectations
- 10:00-10:50 Dev environment setup: Azure ML service Workspace and Azure Notebooks. Authenticate, prepare compute (Azure ML Compute)
- 11:00-11:50 Train first DL model on Azure Notebooks using Azure ML Compute
- 13:00-14:50 Distributed training with Horovod on AML Compute, explore AML Workspace
- 15:00-16:50 Create container images, deploy to Azure Container Instance (and/or Azure Kubernetes Service)
- 17:00-17:50 Questions and answers
- 09:30-10:00 Dev environment setup, Azure Resource creation (IoT Hub, DPS, Cosmos DB, ASA, Storage, etc)
- 10:00-10:30 Set-up Raspberry Pi
- 10:40-11:00 Run D2C message application on Pi
- 11:00-11:50 Provision a device using Azure IoT DPS (X.509 Individual Enrollment)
- 13:00-13:50 D2C message, Azure Stream Analytics, Data to Storage/DB
- 14:00-17:50 Custom Vision Edge module deployment
Day 3 - full instructions here
- 09:30-10:00 Day 1, 2 reflection, Day 3 expectations
- 10:00-11:50 Dev environment setup: Use GitHub Desktop, Azure DevOps(create DevOps account, Organization), create from Azure ML template, customize Build Pipeline
- 13:00-14:50 Customize Release Pipeline, Git clone using personal token, test CI build
- 15:00-16:50 Integrate with IoT Edge deployment
- 17:00-17:50 Questions and answers