Skip to content
/ GORAG Public

The official code implementation of paper: "Graph-based Retrieval Augmented Generation for Dynamic Few-shot Text Classification"

Notifications You must be signed in to change notification settings

Wyb0627/GORAG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 

Repository files navigation

GORAG

The official code repository of the paper "Graph-based Retrieval Augmented Generation for Dynamic Few-shot Text Classification"

Install all requirements via:

pip install -r requirements.txt

Set your huggingface token at line 38 of the run.py in case any downloading is needed, you can comment out line 38 if LLMs are already downloaded.

Then run experiments on the WOS dataset via:

  python run.py --gpu 0 --graphrag --context LLM --LLM llama3 --steiner_tree --edge_weighting tfidf --desc_keywords --shot 1 --online_index all --round 4

And run experiments on the Reuters dataset via:

  python run.py --gpu 0 --graphrag --context LLM --LLM llama3 --steiner_tree --edge_weighting tfidf --desc_keywords --dataset reuters --no_label_name --shot 1 --online_index all

--gpu: The GPU number used;

--dataset: The dataset experimented on;

--no_label_name: Set for Reuters, where the label names are not available;

--LLM: The LLM for use, available LLMs: llama3, llama3.1, qwen2, qwen2.5, mistral;

--edge_weighting: Whether to apply tfidf based edge weighting mechanism or unit weight;

--shot: The number of shots;

--round: The number of dataset split rounds;

--online_index: Whether to apply the online indexing mechanism.

About

The official code implementation of paper: "Graph-based Retrieval Augmented Generation for Dynamic Few-shot Text Classification"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages