Skip to content

A scene text recognition toolbox based on pytorch

License

Notifications You must be signed in to change notification settings

Wzj02200059/vedastr

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Introduction

vedastr is an open source scene text recognition toolbox based on PyTorch. It is designed to be flexible in order to support rapid implementation and evaluation for scene text recognition task.

Features

  • Modular design
    We decompose the scene text recognition framework into different components and one can easily construct a customized scene text recognition framework by combining different modules.

  • Flexibility
    vedastr is flexible enough to be able to easily change the components within a module.

  • Module expansibility
    It is easy to integrate a new module into the vedastr project.

  • Support of multiple frameworks
    The toolbox supports several popular scene text recognition framework, e.g., CRNN, TPS-ResNet-BiLSTM-Attention, Transformer, etc.

  • Good performance
    We re-implement the best model in deep-text-recognition-benchmark and get better average accuracy. What's more, we implement a simple baseline(ResNet-FC) and the performance is acceptable.

License

This project is released under Apache 2.0 license.

Benchmark and model zoo

Note:

MODEL CASE SENSITIVE IIIT5k_3000 SVT IC03_867 IC13_1015 IC15_2077 SVTP CUTE80 AVERAGE
ResNet-CTC False 87.97 84.54 90.54 88.28 67.99 72.71 77.08 81.58
ResNet-FC False 88.80 88.41 92.85 90.34 72.32 79.38 76.74 84.24
TPS-ResNet-BiLSTM-Attention False 90.93 88.72 93.89 92.12 76.41 80.31 79.51 86.49
Small-SATRN False 91.97 88.10 94.81 93.50 75.64 83.88 80.90 87.19

TPS : Spatial transformer network

Small-SATRN: On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention, training phase is case sensitive while testing phase is case insensitive.

AVERAGE : Average accuracy over all test datasets

CASE SENSITIVE : If true, the output is case sensitive and contain common characters. If false, the output is not case sensetive and contains only numbers and letters.

Installation

Requirements

  • Linux
  • Python 3.6+
  • PyTorch 1.4.0 or higher
  • CUDA 9.0 or higher

We have tested the following versions of OS and softwares:

  • OS: Ubuntu 16.04.6 LTS
  • CUDA: 10.2
  • Python 3.6.9
  • Pytorch: 1.5.1

Install vedastr

  1. Create a conda virtual environment and activate it.
conda create -n vedastr python=3.6 -y
conda activate vedastr
  1. Install PyTorch and torchvision following the official instructions, e.g.,
conda install pytorch torchvision -c pytorch
  1. Clone the vedastr repository.
git clone https://github.com/Media-Smart/vedastr.git
cd vedastr
vedastr_root=${PWD}
  1. Install dependencies.
pip install -r requirements.txt

Prepare data

  1. Download Lmdb data from deep-text-recognition-benchmark, which contains training, validation and evaluation data. Note: we use the ST dataset released by ASTER.

  2. Make directory data as follows:

cd ${vedastr_root}
mkdir ${vedastr_root}/data
  1. Put the download LMDB data into this data directory, the structure of data directory will look like as follows:
data
└── data_lmdb_release
    ├── evaluation
    ├── training
    │   ├── MJ
    │   │   ├── MJ_test
    │   │   ├── MJ_train
    │   │   └── MJ_valid
    │   └── ST
    └── validation

Train

  1. Config

Modify some configuration accordingly in the config file like configs/tps_resnet_bilstm_attn.py

  1. Run
python tools/train.py configs/tps_resnet_bilstm_attn.py 

Snapshots and logs will be generated at vedastr/workdir by default.

Test

  1. Config

Modify some configuration accordingly in the config file like configs/tps_resnet_bilstm_attn.py

  1. Run
python tools/test.py configs/tps_resnet_bilstm_attn.py checkpoint_path

Inference

  1. Run
python tools/inference.py configs/tps_resnet_bilstm_attn.py checkpoint_path img_path

Deploy

  1. Install volksdep following the official instructions

  2. Benchmark (optional)

python tools/deploy/benchmark.py configs/resnet_ctc.py checkpoint_path image_file_path --calibration_images image_folder_path

More available arguments are detailed in tools/deploy/benchmark.py.

The result of resnet_ctc is as follows(test device: Jetson AGX Xavier, CUDA:10.2):

framework version input shape data type throughput(FPS) latency(ms)
pytorch 1.5.0 (1, 1, 32, 100) fp32 64 15.81
tensorrt 7.1.0.16 (1, 1, 32, 100) fp32 109 9.66
pytorch 1.5.0 (1, 1, 32, 100) fp16 113 10.75
tensorrt 7.1.0.16 (1, 1, 32, 100) fp16 308 3.55
tensorrt 7.1.0.16 (1, 1, 32, 100) int8(entropy_2) 449 2.38
  1. Export model as ONNX or TensorRT engine format
python tools/deploy/export.py configs/resnet_ctc.py checkpoint_path image_file_path out_model_path

More available arguments are detailed in tools/deploy/export.py.

  1. Inference SDK

You can refer to FlexInfer for details.

Contact

This repository is currently maintained by Jun Sun(@ChaseMonsterAway), Hongxiang Cai (@hxcai), Yichao Xiong (@mileistone).

Credits

We got a lot of code from mmcv , mmdetection, deep-text-recognition-benchmark and vedaseg thanks to open-mmlab, clovaai, Media-Smart.

About

A scene text recognition toolbox based on pytorch

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%