Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update with main #4

Merged
merged 4 commits into from
Dec 4, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 44 additions & 15 deletions scripts/finetune_echat.sh
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,8 @@
#export PYTHONPATH=/root/whisper:$PYTHONPATH
export CUDA_VISIBLE_DEVICES=0,1
export CUDA_LAUNCH_BLOCKING=1
export OMP_NUM_THREADS=1
# export OMP_NUM_THREADS=1
# export PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:128

# debug setting for multiple gpus
# export NCCL_DEBUG=INFO
Expand All @@ -11,57 +12,85 @@ export OMP_NUM_THREADS=1

cd /root/SLAM-LLM

speech_encoder_path=/nfs/zhifu.gzf/ckpt/Whisper/base.pt
# speech_encoder_path=/nfs/zhifu.gzf/ckpt/Whisper/large-v2.pt
speech_encoder_path=/nfs/maziyang.mzy/models/Whisper/large-v2-qwen.pt
llm_path=/nfs/zhifu.gzf/ckpt/Llama-2-7b-hf
output_dir=/nfs/maziyang.mzy/models/llama-2-hf-finetune
output_dir=/nfs/maziyang.mzy/models/llama-2-hf-proj2048-debug

# -m debugpy --listen 5678 --wait-for-client
if [[ $CUDA_VISIBLE_DEVICES != *","* ]]; then
python src/llama_recipes/pipeline/finetune.py \
python -m debugpy --listen 5678 --wait-for-client src/llama_recipes/pipeline/finetune.py \
--model_name echat \
--use_peft --peft_method lora \
--freeze_encoder \
--freeze_llm \
--use_fp16 \
--llm_name llama-2-7b-hf \
--llm_path $llm_path \
--encoder_name whisper \
--encoder_ds_rate 2 \
--encoder_path $speech_encoder_path \
--encoder_projector linear \
--encoder_projector_ds_rate 5 \
--dataset custom_dataset \
--custom_dataset.file src/llama_recipes/datasets/echat_dataset.py:get_audio_dataset \
--custom_dataset.data_path /nfs/zhifu.gzf/data/IEMOCAP_full_release/datalist.jsonl \
--batching_strategy custom \
--custom_dataset.max_words 1024 \
--num_epochs 100 \
--batch_size_training 2 \
--val_batch_size 2 \
--output_dir $output_dir \
--run_test_during_validation true \
--run_test_during_validation_file /nfs/zhifu.gzf/data/IEMOCAP_full_release/Session1/sentences/wav/Ses01M_impro01/Ses01M_impro01_M013.wav \
# --ckpt_path "/nfs/maziyang.mzy/models/llama-2-hf-finetune/echat/7/model.pt" \
# --peft_ckpt "/nfs/maziyang.mzy/models/llama-2-hf-finetune/echat/7" \
--run_test_during_validation \
--run_test_during_validation_file /nfs/zhifu.gzf/data/IEMOCAP_full_release/Session5/sentences/wav/Ses05M_impro04/Ses05M_impro04_M040.wav \
# --ckpt_path "/nfs/maziyang.mzy/models/llama-2-hf-finetune/echat/1/model.pt" \
# --peft_ckpt "/nfs/maziyang.mzy/models/llama-2-hf-finetune/echat/1"
# --use_peft --peft_method lora \

# train
# {"trans": "Well, do you have your passport?\n",
# "emotion": "xxx",
# "wav": "/nfs/zhifu.gzf/data/IEMOCAP_full_release/Session1/sentences/wav/Ses01M_impro01/Ses01M_impro01_F009.wav"}
# {"trans": "No, I don't have a passport.\n",
# "emotion": "neu",
# "wav": "/nfs/zhifu.gzf/data/IEMOCAP_full_release/Session1/sentences/wav/Ses01M_impro01/Ses01M_impro01_M010.wav"}

# val
# {"trans": "Yeah, well thanks for your help.\n",
# "emotion": "ang",
# "wav": "/nfs/zhifu.gzf/data/IEMOCAP_full_release/Session5/sentences/wav/Ses05M_impro04/Ses05M_impro04_M040.wav"}
# {"trans": "I'm sorry. Good luck, man.\n",
# "emotion": "xxx",
# "wav": "/nfs/zhifu.gzf/data/IEMOCAP_full_release/Session5/sentences/wav/Ses05M_impro04/Ses05M_impro04_F038.wav"}

else
torchrun \
--nnodes 1 \
--nproc_per_node 2 \
src/llama_recipes/pipeline/finetune.py \
--model_name echat \
--freeze_encoder \
--use_fp16 \
--enable_fsdp \
--use_peft --peft_method lora \
--llm_name llama-2-7b-hf \
--llm_path $llm_path \
--encoder_name whisper \
--encoder_ds_rate 2 \
--encoder_path $speech_encoder_path \
--encoder_projector linear \
--encoder_projector_ds_rate 5 \
--dataset custom_dataset \
--custom_dataset.file src/llama_recipes/datasets/echat_dataset.py:get_audio_dataset \
--custom_dataset.data_path /nfs/zhifu.gzf/data/IEMOCAP_full_release/datalist.jsonl \
--batching_strategy custom \
--custom_dataset.max_words 1024 \
--num_epochs 100 \
--batch_size_training 8 \
--val_batch_size 8 \
--batch_size_training 2 \
--val_batch_size 2 \
--output_dir $output_dir \
--run_test_during_validation \
--run_test_during_validation_file /nfs/zhifu.gzf/data/IEMOCAP_full_release/Session1/sentences/wav/Ses01M_impro01/Ses01M_impro01_M013.wav \
# --ckpt_path "/nfs/maziyang.mzy/models/llama-2-hf-finetune/echat/7/model.pt" \
# --peft_ckpt "/nfs/maziyang.mzy/models/llama-2-hf-finetune/echat/7" \
fi
--run_test_during_validation_file /nfs/zhifu.gzf/data/IEMOCAP_full_release/Session5/sentences/wav/Ses05M_impro04/Ses05M_impro04_M040.wav \
# --ckpt_path "/nfs/maziyang.mzy/models/llama-2-hf-finetune/echat/1/model.pt" \
# --peft_ckpt "/nfs/maziyang.mzy/models/llama-2-hf-finetune/echat/1"
# --freeze_llm \
fi
14 changes: 9 additions & 5 deletions scripts/inference_echat.sh
Original file line number Diff line number Diff line change
@@ -1,19 +1,21 @@
#!/bin/bash
#export PYTHONPATH=/root/whisper:$PYTHONPATH
export CUDA_VISIBLE_DEVICES=0
export CUDA_VISIBLE_DEVICES=1
export CUDA_LAUNCH_BLOCKING=1

cd /root/SLAM-LLM

speech_encoder_path=/nfs/zhifu.gzf/ckpt/Whisper/base.pt
# speech_encoder_path=/nfs/zhifu.gzf/ckpt/Whisper/base.pt
speech_encoder_path=/nfs/maziyang.mzy/models/Whisper/large-v2-qwen.pt
llm_path=/nfs/zhifu.gzf/ckpt/Llama-2-7b-hf
output_dir=/nfs/maziyang.mzy/models/llama-2-hf-finetune

# -m debugpy --listen 5678 --wait-for-client
#python -m debugpy --listen 5678 --wait-for-client src/llama_recipes/pipeline/finetune.py \
python src/llama_recipes/pipeline/inference.py \
--model_name echat \
--use_peft --peft_method lora \
--freeze_llm \
--use_fp16 \
--quantization \
--llm_name llama-2-7b-hf \
--llm_path $llm_path \
Expand All @@ -28,5 +30,7 @@ python src/llama_recipes/pipeline/inference.py \
--num_epochs 1 \
--batch_size_training 2 \
--output_dir $output_dir \
--ckpt_path "/nfs/maziyang.mzy/models/llama-2-hf-finetune/echat/0/model.pt" \
--peft_ckpt "/nfs/maziyang.mzy/models/llama-2-hf-finetune/echat/0"
--ckpt_path "/nfs/maziyang.mzy/models/llama-2-hf-finetune/echat/1/model.pt" \
--wav_path "/nfs/zhifu.gzf/data/IEMOCAP_full_release/Session5/sentences/wav/Ses05M_impro04/Ses05M_impro04_F035.wav"
# --peft_ckpt "/nfs/maziyang.mzy/models/llama-2-hf-finetune/echat/1"
# --use_peft --peft_method lora \
3 changes: 2 additions & 1 deletion src/llama_recipes/configs/datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,4 +33,5 @@ class custom_dataset:
train_split: str = "train"
test_split: str = "validation"
data_path: str = NotImplemented
max_words: int = NotImplemented
max_words: int = NotImplemented
max_mel: int = 1000
4 changes: 3 additions & 1 deletion src/llama_recipes/configs/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,5 +6,7 @@ class model_config:
llm_name: str = "llama-2-7b-hf"
llm_path: str = "PATH/to/LLAMA/7B"
encoder_name: str = None
encoder_ds_rate: int = 2
encoder_path: str = None
encoder_projector: str = "linear"
encoder_projector: str = "linear"
encoder_projector_ds_rate: int = 5
2 changes: 2 additions & 0 deletions src/llama_recipes/configs/training.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,3 +38,5 @@ class train_config:
use_fast_kernels: bool = False # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
run_test_during_validation: bool = False
run_test_during_validation_file: str = "test.wav"
freeze_llm: bool = False
freeze_encoder: bool = False
46 changes: 32 additions & 14 deletions src/llama_recipes/datasets/echat_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
import torchaudio
from torch.utils.data import Dataset
import whisper
from llama_recipes.utils.compute_utils import calculate_output_length_1d


class EChatDataset(Dataset):
Expand All @@ -23,36 +24,52 @@ def __init__(
super().__init__()

self.dataset_config = dataset_config
self.max_words = dataset_config.max_words
self.max_mel = dataset_config.max_mel
self.tokenizer = tokenizer
self.IGNORE_INDEX = -100 # The default setting in CrossEntropyLoss
self.prompt_template = "USER: {}\n ASSISTANT:"
self.answer_template = "<|{}|><|{}|>"

with open(dataset_config.data_path, 'r') as file:
data = file.readlines()

sentence_list = []

for item in data:
dialog_name, dialog = item.split('\t', 1)
dialog_list = eval(dialog)
for sentence_id in range(len(dialog_list)-2):
if 'emotion' in dialog_list[sentence_id].keys() and 'emotion' in dialog_list[sentence_id+1].keys():
if dialog_list[sentence_id+1]['emotion'] != 'xxx':
sentence_dict = {}
sentence_dict['pre_wav'] = dialog_list[sentence_id]['wav']
sentence_dict['post_emotion'] = dialog_list[sentence_id+1]['emotion']
sentence_dict['post_trans'] = dialog_list[sentence_id+1]['trans']
sentence_list.append(sentence_dict)

total_sentence = len(sentence_list)
print(f"Using {total_sentence} sentence totally.")
# if split == "train":
# self.data = sentence_list[:int(total_sentence * 0.9)]
# else:
# self.data = sentence_list[int(total_sentence * 0.9):]

# debug
if split == "train":
self.data = data[:60]
self.data = sentence_list[:8]
else:
self.data = data[60:]
self.data = sentence_list[8:16]


def __len__(self) -> int:
return len(self.data)

def __getitem__(self, index):
item = self.data[index]
dialog_name, dialog = item.split('\t', 1)
dialog_list = eval(dialog)

while True:
sentence_id = random.randint(0, len(dialog_list)-2)
if 'emotion' in dialog_list[sentence_id].keys() and 'emotion' in dialog_list[sentence_id+1].keys():
if dialog_list[sentence_id]['emotion'] != 'xxx' and dialog_list[sentence_id+1]['emotion'] != 'xxx':
break
speech_raw = whisper.load_audio(dialog_list[sentence_id]['wav'])

speech_raw = whisper.load_audio(item['pre_wav'])
# speech_raw = whisper.pad_or_trim(speech_raw)
speech_mel = whisper.log_mel_spectrogram(speech_raw).permute(1,0)
speech_mel = whisper.log_mel_spectrogram(speech_raw).permute(1,0)[:self.max_mel]

prompt="""
Please provide an emotional response based on the emotional speech you hear.
Expand All @@ -65,12 +82,13 @@ def __getitem__(self, index):
"""

prompt = self.prompt_template.format(prompt)
answer = self.answer_template.format(dialog_list[sentence_id+1]['emotion'], dialog_list[sentence_id+1]['trans'])
answer = self.answer_template.format(item['post_emotion'], item['post_trans'])

prompt_ids = self.tokenizer.encode(prompt)

prompt_length = len(prompt_ids)
speech_length = (speech_mel.shape[0] + 1) // 2 # ad-hoc for whisper for 2x downsample from mel to feats
speech_length = calculate_output_length_1d(speech_length, 5, 5) # ad-hoc for 5x cov1d downsample
speech_pseudo = torch.full((speech_length,),-1)

example = prompt + answer #FIX(MZY): avoid putting a bos token before answer.
Expand Down
3 changes: 2 additions & 1 deletion src/llama_recipes/datasets/speech_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ def __init__(self,
if split == "train":
self.data_list = contents[:-1000]
else:
self.data_list = contents[1000:]
self.data_list = contents[-1000:]

def get_source_len(self, data_dict):
return data_dict["source_len"]
Expand Down Expand Up @@ -76,6 +76,7 @@ def __getitem__(self, index):

prompt_length = len(prompt_ids)
speech_length = (speech_mel.shape[0] + 1) // 2 # ad-hoc for whisper for 2x downsample from mel to feats
speech_length = calculate_output_length_1d(speech_length, 5, 5) # ad-hoc for 5x cov1d downsample
speech_pseudo = torch.full((speech_length,), -1)

example = prompt + answer # FIX(MZY): avoid putting a bos token before answer.
Expand Down
9 changes: 7 additions & 2 deletions src/llama_recipes/model_checkpointing/checkpoint_handler.py
Original file line number Diff line number Diff line change
Expand Up @@ -164,13 +164,18 @@ def save_model_checkpoint_peft(model, optimizer, rank, cfg, epoch=0):
print(f"--> saving model ...")
save_dir = os.path.join(cfg.output_dir, cfg.model_name, str(epoch))
os.makedirs(save_dir, exist_ok=True)
model.llm.save_pretrained(save_dir)
if not cfg.freeze_llm:
model.llm.save_pretrained(save_dir)

save_full_path = os.path.join(save_dir, "model.pt")
cpu_state = model.state_dict()
project_dict = {}
if not cfg.freeze_encoder:
for key in cpu_state.keys():
if key.startswith("encoder."):
project_dict[key] = cpu_state[key]
for key in cpu_state.keys():
if "_projector" in key:
if key.startswith("encoder_projector."):
project_dict[key] = cpu_state[key]
torch.save(project_dict, save_full_path)

Expand Down
Loading
Loading