This repository is the official implementation of MvLNet.
Ubuntu 16.04 + cuda9.0
tensorflow-gpu==1.9.0
Keras==2.1.6
numpy==1.14.3
scikit-learn==0.19.1
munkres==1.0.12
Download pre-trained siamese networks, autoencoders and datasets here:
To train and evaluate the model in the paper, run this command:
python run.py
📋 The default training scrip trains MvLNet on Noisy MNIST. Replace the config name in run.py for other datasets, i.e. Caltech101-20 or wiki.
Our model achieves the following performance :
Model name | ACC | F-mea | NMI | AMI |
---|---|---|---|---|
MvLNet | 99.18 | 99.16 | 97.76 | 97.75 |
Model name | ACC | F-mea | Precision |
---|---|---|---|
MvLNet | 84.49 | 83.57 | 84.29 |
Model name | Image -> Text | Text -> Image | AVG |
---|---|---|---|
MvLNet | 38.7 | 44.4 | 41.5 |
If you find our work useful in your research, please consider citing:
@ARTICLE{huang2021deep,
author={Huang, Zhenyu and Zhou, Joey Tianyi and Zhu, Hongyuan and Zhang, Changqing and Lv, Jiancheng and Peng, Xi},
journal={IEEE Transactions on Image Processing},
title={Deep Spectral Representation Learning From Multi-View Data},
year={2021},
volume={30},
number={},
pages={5352-5362},
doi={10.1109/TIP.2021.3083072},
}