Skip to content

XiaoduoAILab/XmodelLM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Xmodel_LM-1.1B

hf_space arXiv Code License githubgithub

🌟 Introduction

We introduce Xmodel-LM, a compact and efficient 1.1B language model pre-trained on around 2 trillion tokens. Trained on our self-built dataset (Xdata), which balances Chinese and English corpora based on downstream task optimization, Xmodel-LM exhibits remarkable performance despite its smaller size. It notably surpasses existing open-source language models of similar scale.

📊 Benchmark

Commonsense Reasoning

Model ARC-c ARC-e Boolq HellaSwag OpenbookQA PiQA SciQ TriviaQA Winogrande Avg
OPT-1.3B 23.29 57.03 57.80 41.52 23.20 71.71 84.30 7.48 59.59 47.32
Pythia-1.4B 25.60 57.58 60.34 39.81 20.20 71.06 85.20 5.01 56.20 47.00
TinyLLaMA-3T-1.1B 27.82 60.31 57.83 44.98 21.80 73.34 88.90 11.30 59.12 48.59
MobileLLaMA-1.4B 26.28 61.32 57.92 42.87 23.60 71.33 87.40 12.02 58.25 49.00
Qwen1.5-1.8B 32.25 64.69 66.48 45.49 23.80 73.45 92.90 1.01 61.17 51.25
Xmodel-LM-1.1B 28.16 62.29 61.44 45.96 24.00 72.03 89.70 18.46 60.62 51.41
H2O-danube-1.8B 32.94 67.42 65.75 50.85 27.40 75.73 91.50 25.05 62.35 55.44
InternLM2-1.8B 37.54 70.20 69.48 46.52 24.40 75.57 93.90 36.67 65.67 57.77

Problem Solving

Model BBH (3-shot) GLUE (5-shot) GSM8K (5-shot) MMLU (5-shot) Avg Avg w.o. GSM8k
OPT-1.3B 22.67 51.06 0.83 26.70 25.32 33.48
Pythia-1.4B 25.37 52.23 1.63 25.40 26.16 34.33
MobileLLaMA-1.4B 23.48 43.34 1.44 24.60 23.22 30.47
TinyLLaMA-3T-1.1B 26.75 48.25 1.97 25.70 25.67 33.57
H2O-danube-1.8B 27.31 49.83 1.90 25.70 26.19 34.28
Xmodel-LM-1.1B 27.34 52.61 2.58 25.90 27.11 35.28
InternLM2-1.8B 16.86 58.96 23.50 42.00 35.34 39.27
Qwen1.5-1.8B 13.84 64.57 33.59 45.10 39.28 41.17

Chinese Ability

Model ARC-zh XCOPA-zh XNLI-zh Avg
OPT-1.3B 18.80 53.00 33.45 35.08
Pythia-1.4B 21.03 52.60 34.06 35.90
MobileLLaMA-1.4B 20.26 52.80 33.82 35.63
TinyLLaMA-3T-1.1B 21.37 56.80 33.25 37.14
H2O-danube-1.8B 21.79 55.60 34.74 37.38
Xmodel-LM-1.1B 26.24 60.60 36.02 40.95
InternLM2-1.8B 27.69 66.80 34.58 43.00
Qwen1.5-1.8B 32.14 66.00 39.28 45.81

🛠️ Install

  1. Clone this repository and navigate to XmodelLM folder

    git clone https://github.com/XiaoduoAILab/XmodelLM.git
    cd xmodellm
  2. Install Package

    pip install -r requirements.txt

🗝️ Quick Start

Download Xmodel_LM model

Our model files are fully open source on huggingface, you can download them at here.

Example for Xmodel_LM model inference

Download the model files first and save them in your folder. Then you can run the scripts below, we recommend entering an absolute path as the parameter.

python generate.py --model_path path/to/folder --device cuda:0

✏️ Reference

If you find Xmodel_LM useful in your research or applications, please consider giving a star ⭐ and citing using the following BibTeX:

@misc{wang2024xmodellm,
      title={Xmodel-LM Technical Report}, 
      author={Yichuan Wang and Yang Liu and Yu Yan and Qun Wang and Xucheng Huang and Ling Jiang},
      year={2024},
      eprint={2406.02856},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages