Skip to content

YUL-git/TSAD

Repository files navigation

Predictive Model Team Project

File Description

  • TSAD_JY[Final_X].ipynb -- Univariate with Exogenous TSAD (Multivariate)
    Experimental Models: LSTM, GRU, NBEATSx, NHITS, TSMixerx

  • TSAD_JY[Final_M].ipynb -- Multivariate TSAD
    Experimental Models: TSMixer, NHITS, PatchTST, TimesNet

Key Parameters

  • horizon: Prediction length
  • input_size: Training window size
  • threshold: Anomaly detection threshold

RUN CODE

ENVIRONMENT SET
Ubuntu 20.04 LTS CUDA 12.1.0 cudnn8

conda create -n TS PYTHON==3.9
pip install pip
pip install neuralforecast

Choose what you want :)

bash TSAD_JY.sh

OR

If you want to give your own parameters, see below:

python TSAD_JY_X.py --horizon 10 --input_size 20 threshold 4.0
python TSAD_JY_M.py --horizon 20 --input_size 30 threshold 2.0

About

Time-Series Anomaly Detection Project in Predictive Modeling Coursework

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published