Skip to content

YUzushio/become-yukarin-docker

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

become-yukarin-docker

NVIDIA-Docker image for become-yukarin-docker with gpu computing with Python 3.6.6

Warning!! This Dockerfile use auto installation

  • This distoribution made at 2018.10.22
  • If you build from Dockerfile, the versions will be change.

Installed distribution, tool & package versions

  • OS: Ubuntu 16.04.5 LTS (Xenial Xerus)
  • CUDA: 9.0.176
  • cudnn: 7.3.1
  • pyenv 1.2.7
  • Python: 3.6.6
  • pip: 10.0.1
  • Anaconda 4.5.11
  • tensorflow: 1.11.0
  • tensorflow-gpu: 1.11.0
  • keras-gpu: 2.2.4
  • cupy-cuda90(cupy alternative): 4.5.0
  • chaienr: 4.5.0
  • jupyter notebook: 4.4.0

Development host Envirinmenet (For info, it's not prerequrests)

  • OS: Ubuntu 18.04.1 LTS (Bionic Beaver)
  • NVIDIA Driver: 410.48
  • CUDA: 9.0.176
  • Docker: 18.06.1
  • NVIDIA-Docker: 2.0.3
  • GNU Make: 4.1
  • Git: 2.17.1

How to use (with Makefile)

If you see this README from outside GitHub, see here https://github.com/YUzushio/become-yukarin-docker

Clone source

git clone https://github.com/YUzushio/become-yukarin-docker

Go to directory

cd become-yukarin-docker

Build

make build

Run

Default: run /bin/bash in container

make run

Chainer GPU test

  1. Run into contaienr

make run

  1. Go to workspace

cd /workspace

  1. run Chainer GPU test

python chinergputest.py

  1. Exit

exit

Get become-yukarin source into container

Before clone, you should visit repository and read README on GitHub https://github.com/Hiroshiba/become-yukarin

  1. (On host machine) Go to files

    cd files

  2. Clone source

git clone https://github.com/Hiroshiba/become-yukarin

  1. Go to above directory

cd ../

  1. Run into contaienr

make run

  1. Go to workspace

cd workspace

  1. Run jupyter notebook

    Waning!! Jupyter use port 80

./jupyter.sh

  1. Visit your workspace from jupyter notebook page with browser

http://localhost:80