Inference of Meta's Segment Anything Model in pure C/C++
demo-0.mp4
git clone --recursive https://github.com/YavorGIvanov/sam.cpp
cd sam.cpp
Note: you need to download the model checkpoint below (sam_vit_b_01ec64.pth
) first from here and place it in the checkpoints
folder
# Convert PTH model to ggml. Requires python3, torch and numpy
python convert-pth-to-ggml.py checkpoints/sam_vit_b_01ec64.pth . 1
# You need CMake and SDL2
SDL2 - Used for GUI windows & input [libsdl](https://www.libsdl.org)
[Ubuntu]
$ sudo apt install libsdl2-dev
[Mac OS with brew]
$ brew install sdl2
[MSYS2]
$ pacman -S git cmake make mingw-w64-x86_64-dlfcn mingw-w64-x86_64-gcc mingw-w64-x86_64-SDL2
# Build sam.cpp.
mkdir build && cd build
cmake .. && make -j4
# run inference
./bin/sam -t 16 -i ../img.jpg -m ../checkpoints/ggml-model-f16.bin
Note: The optimal threads parameter ("-t") value should be manually selected based on the specific machine running the inference.
Note: If you have problems with the Windows build, you can check this issue for more details
You can download a model checkpoint and convert it to ggml
format using the script convert-pth-to-ggml.py
:
# Convert PTH model to ggml
python convert-pth-to-ggml.py sam_vit_b_01ec64.pth . 1
$ ▶ make -j sam && time ./bin/sam -t 8 -i img.jpg
[ 28%] Built target common
[ 71%] Built target ggml
[100%] Built target sam
main: seed = 1693224265
main: loaded image 'img.jpg' (680 x 453)
sam_image_preprocess: scale = 0.664062
main: preprocessed image (1024 x 1024)
sam_model_load: loading model from 'models/sam-vit-b/ggml-model-f16.bin' - please wait ...
sam_model_load: n_enc_state = 768
sam_model_load: n_enc_layer = 12
sam_model_load: n_enc_head = 12
sam_model_load: n_enc_out_chans = 256
sam_model_load: n_pt_embd = 4
sam_model_load: ftype = 1
sam_model_load: qntvr = 0
operator(): ggml ctx size = 202.32 MB
sam_model_load: ...................................... done
sam_model_load: model size = 185.05 MB / num tensors = 304
embd_img
dims: 64 64 256 1 f32
First & Last 10 elements:
-0.05117 -0.06408 -0.07154 -0.06991 -0.07212 -0.07690 -0.07508 -0.07281 -0.07383 -0.06779
0.01589 0.01775 0.02250 0.01675 0.01766 0.01661 0.01811 0.02051 0.02103 0.03382
sum: 12736.272313
Skipping mask 0 with iou 0.705935 below threshold 0.880000
Skipping mask 1 with iou 0.762136 below threshold 0.880000
Mask 2: iou = 0.947081, stability_score = 0.955437, bbox (371, 436), (144, 168)
main: load time = 51.28 ms
main: total time = 2047.49 ms
real 0m2.068s
user 0m16.343s
sys 0m0.214s
Input point is (414.375, 162.796875) (currently hardcoded)
Input image:
Output mask (mask_out_2.png in build folder):
- Reduce memory usage by utilizing the new ggml-alloc
- Remove redundant graph nodes
- Fix the difference in output masks compared to the PyTorch implementation
- Filter masks based on stability score
- Add support for point user input
- Support bigger model checkpoints
- Make inference faster
- Support F16 for heavy F32 ops
- Test quantization
- Add support for mask and box input + #14
- GPU support