We introduce OpenStory++, a large-scale open-domain dataset focusing on enabling MLLMs to perform storytelling generation tasks.
- Release dataset
- Release dataset organization code
- Release data process pipeline code
- Release video preprocessing code
- Release benchmark evaluation code
-
You can use img2dataset to organize single image dataset
example:
img2dataset --url_list OpenstoryPlusPlus/unique_v2/part1 --input_format "parquet" --url_col "url" --output_format webdataset --output_folder "single_tar" --processes_count 12 --thread_count 12 --save_additional_columns '["png","json"]' --image_size 512 --resize_mode="keep_ratio" --enable_wandb False
-
To organize the story dataset as described in the paper, you can use
utilis\download_videos.py
to download videos from YouTube and extract frames for the dataset. Additionally, you can utilizeutilis\organize_story.py
to properly structure the story dataset.
-
You can use
single_pipeline.py
to get images with instance-level annotation.Hint: the input image should in
webdataset
format, the source image should in the "jpg" key.