Skip to content
View YeongHyeon's full-sized avatar

Highlights

  • Pro

Block or report YeongHyeon

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
YeongHyeon/README.md

  stat

[CV][Google Scholar]

Papers

SCIE

  • [2024] YeongHyeon Park, Sungho Kang, Myung Jin Kim, Yeonho Lee, Hyeong Seok Kim, and Juneho Yi. "Visual Defect Obfuscation Based Self-Supervised Anomaly Detection." Scientific Reports [paper][poster]
  • [2023] YeongHyeon Park, Myung Jin Kim, Uju Gim, and Juneho Yi. "Boost-up Efficiency of Defective Solar Panel Detection with Pre-trained Attention Recycling." IEEE T-IA [paper][slide]
  • [2022] YeongHyeon Park and JongHee Jung. "Efficient Non-Compression Auto-Encoder for Driving Noise-Based Road Surface Anomaly Detection." IEEJ T-EEE [paper]
  • [2020] YeongHyeon Park, Won Seok Park, and Yeong Beom Kim. "Anomaly Detection in Particulate Matter Sensor using Hypothesis Pruning Generative Adversarial Network." ETRIJ [paper]
  • [2020] YeongHyeon Park, Il Dong Yun, and Si-Hyuck Kang. "The CNN-based Coronary Occlusion Site Localization with Effective Preprocessing Method." IEEJ T-EEE [paper]
  • [2019] YeongHyeon Park, Il Dong Yun, and Si-Hyuck Kang. "Preprocessing Method for Performance Enhancement in CNN-based STEMI Detection from 12-lead ECG." IEEE Access [paper]
  • [2019] YeongHyeon Park and Il Dong Yun. "Arrhythmia detection in electrocardiogram based on recurrent neural network encoder–decoder with Lyapunov exponent." IEEJ T-EEE [paper]
  • [2018] YeongHyeon Park and Il Dong Yun. "Fast Adaptive RNN Encoder–Decoder for Anomaly Detection in SMD Assembly Machine." Sensors [paper]

International Conference

  • [2024] YeongHyeon Park, Sungho Kang, Myung Jin Kim, Yeonho Lee, and Juneho Yi. "Exploiting Connection-Switching U-Net for Enhancing Surface Anomaly Detection." IEEE ICECIE [paper][slide]
  • [2024] YeongHyeon Park, Sungho Kang, Myung Jin Kim, Hyeonho Jeong, Hyunkyu Park, Hyeong Seok Kim, and Juneho Yi. "Neural Network Training Strategy to Enhance Anomaly Detection Performance: A Perspective on Reconstruction Loss Amplification." IEEE ICASSP [paper][poster]
  • [2024] Hanbyul Lee*, YeongHyeon Park*, and Juneho Yi. "Enhancing Defective Solar Panel Detection with Attention-guided Statistical Features using Pre-trained Neural Networks." IEEE BigComp [paper] (* Equal contribution)
  • [2023] YeongHyeon Park, Uju Gim, and Myung Jin Kim. "Edge Storage Management Recipe with Zero-Shot Data Compression for Road Anomaly Detection." IEEE ICTC [paper][slide]
  • [2023] Sungho Kang, Hyunkyu Park, YeongHyeon Park, Yeonho Lee, Hanbyul Lee, Seho Bae, and Juneho Yi. "Exploiting Monocular Depth Estimation for Style Harmonization in Landscape Painting." IEEE ICKII [paper]
  • [2023] Hyunkyu Park, Sungho Kang, YeongHyeon Park, Yeonho Lee, Hanbyul Lee, Seho Bae, and Juneho Yi. "Unsupervised Image-to-Image Translation Based on Bidirectional Style Transfer." IEEE ICKII [paper]
  • [2023] YeongHyeon Park, Myung Jin Kim, Won Seok Park, and Juneho Yi. "Recycling for Recycling: RoI Cropping by Recycling a Pre-trained Attention Mechanism for Accurate Classification of Recyclables." IEEE SIST [paper][slide]
  • [2023] YeongHyeon Park, Myung Jin Kim, and Won Seok Park. "Frequency of Interest-based Noise Attenuation Method to Improve Anomaly Detection Performance." IEEE BigComp [paper][slide]
  • [2022] YeongHyeon Park, Myung Jin Kim, and Uju Gim. "Attention! Is Recycling Artificial Neural Network Effective for Maintaining Renewable Energy Efficiency?" IEEE TPEC [paper][slide]
  • [2021] YeongHyeon Park and JongHee Jung. "Non-Compression Auto-Encoder for Detecting Road Surface Abnormality via Vehicle Driving Noise." IEEE ICACEH [paper]
  • [2021] YeongHyeon Park and Myung Jin Kim. "Design of Cost-Effective Auto-Encoder for Electric Motor Anomaly Detection in Resource Constrained Edge Device." IEEE ECICE [paper]

Domestic Conference

  • [2024] 박영현, 강성호, 김명진, 이연호, 이준호. "Connection-Switching U-Net을 활용하는 표면이상탐지 성능 향상" 한국방송미디어공학회 2024년 하계학술대회 (2024 The Korean Institute of Broadcast and Media Engineers Summer Conference) [paper]
  • [2023] 김재선, 박춘우, 박원석, 박영현, 조창현, 김동주. "공정 매개변수 및 열화상 이미지를 기반으로 한 다공성 결함 감지를 위한 고압 다이캐스팅 결함 예측 딥러닝 알고리즘에 관한 연구" [paper]
  • [2023] 박영현, 김명진, 박원석, 이준호. "재활용품 분류 자동화 효율증대를 위한 어텐션 메커니즘 기반 객체분할 방법"
  • [2023] 강성호, 박현규, 정현호, 박영현, 배세호, 이준호. "단안 영상 깊이 추정을 활용하는 객체 변환 합성"
  • [2023] 박현규, 배세호, 박영현, 강성호, 이준호. "양방향 스타일 변환 네트워크를 사용하는 비지도 학습 기반의 도메인 간 영상 변환"
  • [2023] 김명진, 박영현, 윤일동. "적대적 학습에서 긍정 샘플의 선정에 대한 기법"
  • [2022] 김우주, 박영현. "이상 탐지를 위한 오토인코더 기반 잠재 벡터 확장" [arXiv]
  • [2022] 박영현, 이준성, 김명진, 박원석. "주행 소음 기반 도로 이상탐지 성능 향상을 위한 주행 이벤트 추출 및 노이즈 감쇄 방법" [arXiv]
  • [2022] 김명진, 박영현. "Attention 기반의 이상 부위 자동 labeling 기법"
  • [2021] 박영현, 이준성, 박원석. "신뢰도 기반 개별 모델 영향력을 조정하는 자체 가중치 앙상블 방법" [arXiv]

Preprints

  • [2024] YeongHyeon Park, Myung Jin Kim, Hyeong Seok Kim. "Contrastive Language Prompting to Ease False Positives in Medical Anomaly Detection" [arXiv]
  • [2024] YeongHyeon Park, Sungho Kang, Myung Jin Kim, Hyeong Seok Kim, and Juneho Yi. "Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection" [arXiv]
  • [2024] Dongeon Kim, YeongHyeon Park. "Empirical Analysis of Anomaly Detection on Hyperspectral Imaging Using Dimension Reduction Methods" [arXiv]
  • [2022] YeongHyeon Park. "Concise Logarithmic Loss Function for Robust Training of Anomaly Detection Model" [arXiv]
  • [2018] YeongHyeon Park and Il Dong Yun. "Comparison of RNN Encoder-Decoder Models for Anomaly Detection" [arXiv]
Repositories
Repositories  
│
├── TensorFlow 
│    ├── Publications (Sorted by year in ascending order)
│    │    ├── Preprocessing Method for Performance Enhancement in CNN-based STEMI Detection from 12-lead ECG
│    │    │    ├── IEEE Access (2019): https://ieeexplore.ieee.org/abstract/document/8771175
│    │    │    └── Source: https://github.com/YeongHyeon/Preprocessing-Method-for-STEMI-Detection
│    │    ├── Arrhythmia detection in electrocardiogram based on recurrent neural network encoder–decoder with Lyapunov exponent
│    │    │    ├── IEEJ (2018): https://onlinelibrary.wiley.com/doi/abs/10.1002/tee.22927
│    │    │    └── Source: https://github.com/YeongHyeon/Arrhythmia_Detection_RNN_and_Lyapunov
│    │    └── Fast Adaptive RNN Encoder–Decoder for Anomaly Detection in SMD Assembly Machine
│    │         ├── MDPI (2018): https://www.mdpi.com/1424-8220/18/10/3573
│    │         └── Source: https://github.com/YeongHyeon/FARED_for_Anomaly_Detection
│    │  
│    ├── Discriminative Model
│    │    ├── Series Inception
│    │    │    ├── Inception: https://github.com/YeongHyeon/Inception_Simplified-TF2
│    │    │    └── XCeption: https://github.com/YeongHyeon/XCeption-TF2
│    │    ├── Series Residual
│    │    │    ├── ResNet: https://github.com/YeongHyeon/ResNet-TF2
│    │    │    ├── ResNeXt: https://github.com/YeongHyeon/ResNeXt-TF2
│    │    │    ├── WRN: https://github.com/YeongHyeon/WideResNet_WRN-TF2
│    │    │    ├── ResNeSt: https://github.com/YeongHyeon/ResNeSt-TF2
│    │    │    └── ReXNet: https://github.com/YeongHyeon/ReXNet-TF2
│    │    ├── Series Bayesian / Gaussian
│    │    │    └── SWA-Gaussian: https://github.com/YeongHyeon/SWA-Gaussian-TF2
│    │    ├── Series Graph
│    │    │    └── PIPGCN: https://github.com/YeongHyeon/PIPGCN-TF2
│    │    └── Ohters
│    │         ├── SE-Net: https://github.com/YeongHyeon/SENet-Simple
│    │         ├── SK-Net: https://github.com/YeongHyeon/SKNet-TF2
│    │         ├── GhostNet: https://github.com/YeongHyeon/GhostNet
│    │         ├── Network-in-Network: https://github.com/YeongHyeon/Network-in-Network-TF2
│    │         ├── Shake-Shake Regularization: https://github.com/YeongHyeon/Shake-Shake
│    │         ├── MNIST Attention Map: https://github.com/YeongHyeon/MNIST_AttentionMap
│    │         └── MLP-Mixer: https://github.com/YeongHyeon/MLP-Mixer-TF2
│    │    
│    ├── Generative Model
│    │    ├── Generals
│    │    │    ├── GAN: https://github.com/YeongHyeon/GAN-TF
│    │    │    ├── WGAN: https://github.com/YeongHyeon/WGAN-TF
│    │    │    ├── CGAN: https://github.com/YeongHyeon/CGAN-TF
│    │    │    ├── Normalizing Flow: https://github.com/YeongHyeon/Normalizing-Flow-TF2
│    │    │    └── Transformer: https://github.com/YeongHyeon/Transformer-TF2
│    │    ├── Anomaly Detection
│    │    │    ├── CVAE (Convolution & Variational): https://github.com/YeongHyeon/CVAE-AnomalyDetection
│    │    │    ├── GANomaly: https://github.com/YeongHyeon/GANomaly-TF
│    │    │    ├── Skip-GANomaly: https://github.com/YeongHyeon/Skip-GANomaly
│    │    │    ├── ConAD: https://github.com/YeongHyeon/ConAD
│    │    │    ├── MemAE: https://github.com/YeongHyeon/MemAE
│    │    │    ├── f-AnoGAN: https://github.com/YeongHyeon/f-AnoGAN-TF
│    │    │    ├── DGM: https://github.com/YeongHyeon/DGM-TF
│    │    │    └── ADAE: https://github.com/YeongHyeon/ADAE-TF
│    │    └── Special Purpose
│    │         ├── SRCNN: https://github.com/YeongHyeon/Super-Resolution_CNN
│    │         ├── Context-Encoder: https://github.com/YeongHyeon/Context-Encoder
│    │         └── Sequence-Autoencoder: https://github.com/YeongHyeon/Sequence-Autoencoder
│    │    
│    └── Additional Methods
│         ├── SGDR: https://github.com/YeongHyeon/ResNet-with-SGDR-TF2
│         ├── Learning rate WarmUp: https://github.com/YeongHyeon/ResNet-with-LRWarmUp-TF2
│         └── ArcFace: https://github.com/YeongHyeon/ArcFace-TF2
│
└── PyTorch
     ├── Discriminative Model
     │    └── Ohters
     │         ├── MLP-Mixer: https://github.com/YeongHyeon/MLP-Mixer-PyTorch
     │         ├── GhostNet: https://github.com/YeongHyeon/GhostNet-PyTorch
     │         └── DINO: https://github.com/YeongHyeon/DINO_MNIST-PyTorch
     └── Generative Model
          ├── Anomaly Detection
          │    ├── CVAE (Convolution & Variational): https://github.com/YeongHyeon/CVAE-AnomalyDetection-PyTorch
          │    ├── GANomaly: https://github.com/YeongHyeon/GANomaly-PyTorch
          │    ├── ConAD: https://github.com/YeongHyeon/ConAD-PyTorch
          │    └── RIAD: https://github.com/YeongHyeon/RIAD-PyTorch
          └── Special Purpose
               └── SRCNN: https://github.com/YeongHyeon/Super-Resolution_CNN-PyTorch
Kaggle

Notebooks Expert 🎓

Competition

  • 🥉 RSNA 2023 Abdominal Trauma Detection

Datasets

Pinned Loading

  1. R-CNN_LIGHT R-CNN_LIGHT Public

    Regional-Convolution Neural Network for blink detection based on contouring.

    Python 66 22

  2. ResNeSt-TF2 ResNeSt-TF2 Public

    TensorFlow implementation of "ResNeSt: Split-Attention Networks"

    Python 67 17

  3. Super-Resolution_CNN Super-Resolution_CNN Public

    Implementation of "Image Super-Resolution using Deep Convolutional Network"

    Python 44 13

  4. FARED_for_Anomaly_Detection FARED_for_Anomaly_Detection Public

    Official source code of "Fast Adaptive RNN Encoder-Decoder for Anomaly Detection in SMD Assembly Machine"

    Python 17 4

  5. MemAE-TF2 MemAE-TF2 Public

    TensorFlow implementation of "Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection"

    Python 25 6

  6. SWA-Gaussian-TF2 SWA-Gaussian-TF2 Public

    TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

    Python 8