-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
433 additions
and
117 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
from typing import List | ||
import yaml | ||
import argparse | ||
import os | ||
from transformers import AutoModelForCausalLM, AutoTokenizer | ||
import torch | ||
import numpy as np | ||
from rdkit.Chem import rdMolDescriptors | ||
from chemlactica.mol_opt.optimization import optimize | ||
from chemlactica.mol_opt.utils import set_seed, MoleculeEntry | ||
|
||
|
||
class TPSA_Weight_Oracle: | ||
def __init__(self, max_oracle_calls: int): | ||
# maximum number of oracle calls to make | ||
self.max_oracle_calls = max_oracle_calls | ||
|
||
# the frequence with which to log | ||
self.freq_log = 100 | ||
|
||
# the buffer to keep track of all unique molecules generated | ||
self.mol_buffer = {} | ||
|
||
# the maximum possible oracle score or an upper bound | ||
self.max_possible_oracle_score = 1.0 | ||
|
||
# if True the __call__ function takes list of MoleculeEntry objects | ||
# if False (or unspecified) the __call__ function takes list of SMILES strings | ||
self.takes_entry = True | ||
|
||
def __call__(self, molecules: List[MoleculeEntry]): | ||
""" | ||
Evaluate and return the oracle scores for molecules. Log the intermediate results if necessary. | ||
""" | ||
oracle_scores = [] | ||
for molecule in molecules: | ||
if self.mol_buffer.get(molecule.smiles): | ||
oracle_scores.append(sum(self.mol_buffer[molecule.smiles][0])) | ||
else: | ||
try: | ||
tpsa = rdMolDescriptors.CalcTPSA(molecule.mol) | ||
tpsa_score = min(tpsa / 1000, 1) | ||
weight = rdMolDescriptors.CalcExactMolWt(molecule.mol) | ||
if weight <= 349: | ||
weight_score = 1 | ||
elif weight >= 500: | ||
weight_score = 0 | ||
else: | ||
weight_score = -0.00662 * weight + 3.31125 | ||
|
||
oracle_score = (tpsa_score + weight_score) / 3 | ||
except Exception as e: | ||
print(e) | ||
oracle_score = 0 | ||
self.mol_buffer[molecule.smiles] = [oracle_score, len(self.mol_buffer) + 1] | ||
if len(self.mol_buffer) % 100 == 0: | ||
self.log_intermediate() | ||
oracle_scores.append(oracle_score) | ||
return oracle_scores | ||
|
||
def log_intermediate(self): | ||
scores = [v[0] for v in self.mol_buffer.values()][-self.max_oracle_calls:] | ||
scores_sorted = sorted(scores, reverse=True)[:100] | ||
n_calls = len(self.mol_buffer) | ||
|
||
score_avg_top1 = np.max(scores_sorted) | ||
score_avg_top10 = np.mean(scores_sorted[:10]) | ||
score_avg_top100 = np.mean(scores_sorted) | ||
|
||
print(f"{n_calls}/{self.max_oracle_calls} | ", | ||
f'avg_top1: {score_avg_top1:.3f} | ' | ||
f'avg_top10: {score_avg_top10:.3f} | ' | ||
f'avg_top100: {score_avg_top100:.3f}') | ||
|
||
def __len__(self): | ||
return len(self.mol_buffer) | ||
|
||
@property | ||
def budget(self): | ||
return self.max_oracle_calls | ||
|
||
@property | ||
def finish(self): | ||
# the stopping condition for the optimization process | ||
return len(self.mol_buffer) >= self.max_oracle_calls | ||
|
||
|
||
def parse_arguments(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--output_dir", type=str, required=True) | ||
parser.add_argument("--config_default", type=str, required=True) | ||
parser.add_argument("--n_runs", type=int, required=False, default=1) | ||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
if __name__ == "__main__": | ||
args = parse_arguments() | ||
config = yaml.safe_load(open(args.config_default)) | ||
|
||
model = AutoModelForCausalLM.from_pretrained(config["checkpoint_path"], torch_dtype=torch.bfloat16).to(config["device"]) | ||
tokenizer = AutoTokenizer.from_pretrained(config["tokenizer_path"], padding_side="left") | ||
|
||
seeds = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31] | ||
for i in range(args.n_runs): | ||
set_seed(seeds[i]) | ||
oracle = TPSA_Weight_Oracle(max_oracle_calls=1000) | ||
config["log_dir"] = os.path.join(args.output_dir, "results_tpsa+weight+num_rungs.log") | ||
config["max_possible_oracle_score"] = oracle.max_possible_oracle_score | ||
optimize( | ||
model, tokenizer, | ||
oracle, config | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.