Skip to content

Commit

Permalink
Added performance tests for Eager Dygraph #1 (PaddlePaddle#37638)
Browse files Browse the repository at this point in the history
  • Loading branch information
jim19930609 authored Nov 28, 2021
1 parent 48faf63 commit 7df301f
Show file tree
Hide file tree
Showing 4 changed files with 837 additions and 0 deletions.
324 changes: 324 additions & 0 deletions paddle/fluid/eager/tests/performance_tests/benchmark_utils.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,324 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/tests/performance_tests/benchmark_utils.h"

#include <iostream>
#include <memory>
#include <set>
#include <string>
#include <vector>

// Eager
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/backward.h"
#include "paddle/fluid/eager/tests/test_utils.h"
#include "paddle/fluid/eager/utils.h"

// Eager Generated
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"

// Fluid
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/imperative/basic_engine.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/memory/memcpy.h"

#include "paddle/fluid/eager/tests/benchmark/benchmark_utils.h"

#include "paddle/pten/core/kernel_registry.h"

static size_t max_num_benchmark_runs = 5000;

namespace egr {

/* --------------------- */
/* ---- Eager Scale ---- */
/* --------------------- */
void benchmark_eager_scale(const EagerTensor& tensor, bool accuracy_check) {
EagerTensor input_tensor = tensor;
float scale = 2.0;
float bias = 3.0;

size_t max_num_runs = accuracy_check ? 10 : max_num_benchmark_runs;
for (size_t i = 0; i < max_num_runs; i++) {
input_tensor =
egr::scale(input_tensor, scale, bias, true /*bias_after_scale*/,
true /*trace_backward*/);
}

std::vector<EagerTensor> target_tensors = {input_tensor};
RunBackward(target_tensors, {});

if (accuracy_check) {
// Examine Forward Grad (w.r.t max_num_runs = 10)
CompareTensorWithValue<float>(input_tensor, 8189.0);
// Examine Backward Grad (w.r.t max_num_runs = 10)
CompareGradTensorWithValue<float>(tensor, 1024.0);
}
}

/* ----------------------------------- */
/* ---- Eager Intermediate Matmul ---- */
/* ----------------------------------- */
void benchmark_eager_intermediate_matmul(const EagerTensor& X,
const EagerTensor& Y,
bool accuracy_check) {
EagerTensor input_tensor0 = X;

size_t max_num_runs = accuracy_check ? 2 : max_num_benchmark_runs;
for (size_t i = 0; i < max_num_runs; i++) {
input_tensor0 = matmul_v2_dygraph_function(
input_tensor0, Y, {{"trans_x", false}, {"trans_y", false}});
}

std::vector<EagerTensor> target_tensors = {input_tensor0};
RunBackward(target_tensors, {});

if (accuracy_check) {
// Examine Forward Grad (w.r.t max_num_runs = 2)
CompareVariableWithValue<float>(input_tensor0, 16);
// Examine Backward Grad (w.r.t max_num_runs = 2)
CompareGradVariableWithValue<float>(X, 16);
CompareGradVariableWithValue<float>(Y, 16);
}
}

/* -------------------------------- */
/* ---- Eager Intermediate MLP ---- */
/* -------------------------------- */
void benchmark_eager_intermediate_mlp(const EagerTensor& X,
const std::vector<EagerTensor>& Ws,
const std::vector<EagerTensor>& Bs,
bool accuracy_check) {
EagerTensor input0 = X;

for (size_t i = 0; i < MLP_NUM_LINEAR; i++) {
EagerTensor Out = matmul_v2_dygraph_function(
input0, Ws[i], {{"trans_x", false}, {"trans_y", false}});

input0 = elementwise_add_dygraph_function(Out, Bs[i], {});
}

EagerTensor Out = reduce_sum_dygraph_function(input0, {{"reduce_all", true}});

std::vector<EagerTensor> target_tensors = {Out};
RunBackward(target_tensors, {});

if (accuracy_check) {
std::unordered_map<std::string, float> result =
compute_mlp_expected_results();

// Examine Forward Grad (w.r.t max_num_runs = 2)
CompareVariableWithValue<float>(Out, result["Out"]);

// Examine Backward Grad (w.r.t max_num_runs = 2)
CompareGradVariableWithValue<float>(X, result["GradX"]);
CompareGradVariableWithValue<float>(Ws[0], result["GradW"]);
}
}

} // namespace egr

namespace paddle {
namespace imperative {

static void FluidCheckTensorValue(const std::shared_ptr<imperative::VarBase>& X,
const paddle::platform::Place& place,
float value) {
auto* tensor = X->MutableVar()->GetMutable<framework::LoDTensor>();
float* t_ptr = tensor->mutable_data<float>(place);
std::vector<float> host_data(tensor->numel());
if (place == paddle::platform::CUDAPlace()) {
paddle::platform::DeviceContextPool& pool =
paddle::platform::DeviceContextPool::Instance();
auto* dev_ctx =
dynamic_cast<paddle::platform::CUDADeviceContext*>(pool.Get(place));
auto stream = dev_ctx->stream();

paddle::memory::Copy(paddle::platform::CPUPlace(), host_data.data(),
paddle::platform::CUDAPlace(), t_ptr,
sizeof(float) * tensor->numel(), stream);
t_ptr = host_data.data();
}
VLOG(6) << "Tensor Value: " << t_ptr[0] << ", Expected Value: " << value;
PADDLE_ENFORCE(
t_ptr[0] == value,
paddle::platform::errors::Fatal(
"Detected numerical Error, Expected %f but got %f", value, t_ptr[0]));
}

static void FluidCheckGradTensorValue(
const std::shared_ptr<imperative::VarBase>& X,
const paddle::platform::Place& place, float value) {
auto* grad_tensor = X->MutableGradVar()->GetMutable<framework::LoDTensor>();
float* g_ptr = grad_tensor->mutable_data<float>(place);
std::vector<float> g_host_data(grad_tensor->numel());
if (place == paddle::platform::CUDAPlace()) {
paddle::platform::DeviceContextPool& pool =
paddle::platform::DeviceContextPool::Instance();
auto* dev_ctx =
dynamic_cast<paddle::platform::CUDADeviceContext*>(pool.Get(place));
auto stream = dev_ctx->stream();

paddle::memory::Copy(paddle::platform::CPUPlace(), g_host_data.data(),
paddle::platform::CUDAPlace(), g_ptr,
sizeof(float) * grad_tensor->numel(), stream);
g_ptr = g_host_data.data();
}
VLOG(6) << "Tensor Value: " << g_ptr[0] << ", Expected Value: " << value;
PADDLE_ENFORCE(
g_ptr[0] == value,
paddle::platform::errors::Fatal(
"Detected numerical Error, Expected %f but got %f", value, g_ptr[0]));
}

/* --------------------- */
/* ---- Fluid Scale ---- */
/* --------------------- */
// TODO(jiabin): Change this and remove nolint
void benchmark_fluid_scale(const std::shared_ptr<imperative::VarBase>& X,
const paddle::platform::Place& place,
bool accuracy_check) {
imperative::Tracer tracer;
framework::AttributeMap attrs;

attrs["use_mkldnn"] = false;
attrs["scale"] = 2;
attrs["bias"] = 3;
attrs["bias_after_scale"] = true;

std::shared_ptr<imperative::VarBase> tmp_out = X;

size_t max_num_runs = accuracy_check ? 10 : max_num_benchmark_runs;
for (size_t i = 0; i < max_num_runs; i++) {
imperative::NameVarBaseMap ins = {{"X", {tmp_out}}};
imperative::NameVarBaseMap outs = {
{"Out",
{std::shared_ptr<imperative::VarBase>(
new imperative::VarBase(true, "Out"))}}};

tracer.TraceOp("scale", ins, outs, attrs, place, true);

tmp_out = outs["Out"][0];
}

auto* engine = tracer.GetEngine();
std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
engine->Init({tmp_out}, grad_tensors, false /*retain_graph*/);
engine->Execute();

if (accuracy_check) {
FluidCheckTensorValue(tmp_out, place, 8189.0);
FluidCheckGradTensorValue(X, place, 1024.0);
}
}

/* ---------------------- */
/* ---- Fluid Matmul ---- */
/* ---------------------- */
void benchmark_fluid_matmul(const std::shared_ptr<imperative::VarBase>& X,
const std::shared_ptr<imperative::VarBase>& Y,
const paddle::platform::Place& place,
bool accuracy_check) {
imperative::Tracer tracer;

std::shared_ptr<imperative::VarBase> tmp_out = X;

size_t max_num_runs = accuracy_check ? 2 : max_num_benchmark_runs;
for (size_t i = 0; i < max_num_runs; i++) {
framework::AttributeMap attrs;
imperative::NameVarBaseMap ins = {{"X", {tmp_out}}, {"Y", {Y}}};
imperative::NameVarBaseMap outs = {
{"Out",
{std::shared_ptr<imperative::VarBase>(
new imperative::VarBase(true, "Out"))}}};

tracer.TraceOp("matmul_v2", ins, outs, attrs, place, true);

tmp_out = outs["Out"][0];
}

auto* engine = tracer.GetEngine();
std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
engine->Init({tmp_out}, grad_tensors, false /*retain_graph*/);
engine->Execute();

if (accuracy_check) {
FluidCheckTensorValue(tmp_out, place, 16);
FluidCheckGradTensorValue(X, place, 16);
FluidCheckGradTensorValue(Y, place, 16);
}
}

/* ------------------- */
/* ---- Fluid MLP ---- */
/* ------------------- */
void benchmark_fluid_mlp(
const std::shared_ptr<imperative::VarBase>& X,
const std::vector<std::shared_ptr<imperative::VarBase>>& Ws,
const std::vector<std::shared_ptr<imperative::VarBase>>& Bs,
const paddle::platform::Place& place, bool accuracy_check) {
imperative::Tracer tracer;

imperative::NameVarBaseMap ins;
imperative::NameVarBaseMap outs;
framework::AttributeMap attrs;
std::shared_ptr<imperative::VarBase> input0 = X;
for (size_t i = 0; i < MLP_NUM_LINEAR; i++) {
// Matmul0
ins = {{"X", {input0}}, {"Y", {Ws[0]}}};
outs = {{"Out",
{std::shared_ptr<imperative::VarBase>(
new imperative::VarBase(true, "Out"))}}};

tracer.TraceOp("matmul_v2", ins, outs, attrs, place, true);

// EW-Add0
ins = {{"X", outs["Out"]}, {"Y", {Bs[i]}}};
outs = {{"Out",
{std::shared_ptr<imperative::VarBase>(
new imperative::VarBase(true, "Out"))}}};

tracer.TraceOp("elementwise_add", ins, outs, attrs, place, true);
input0 = outs["Out"][0];
}

// ReduceSum
ins = {{"X", {input0}}};
outs = {{"Out",
{std::shared_ptr<imperative::VarBase>(
new imperative::VarBase(true, "Out"))}}};
attrs = {{"reduce_all", true}};

tracer.TraceOp("reduce_sum", ins, outs, attrs, place, true);

auto* engine = tracer.GetEngine();
std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
engine->Init(outs["Out"], grad_tensors, false /*retain_graph*/);
engine->Execute();

if (accuracy_check) {
std::unordered_map<std::string, float> result =
egr::compute_mlp_expected_results();

FluidCheckTensorValue(outs["Out"][0], place, result["Out"]);
FluidCheckGradTensorValue(X, place, result["GradX"]);
FluidCheckGradTensorValue(Ws[0], place, result["GradW"]);
}
}

} // namespace imperative
} // namespace paddle
Loading

0 comments on commit 7df301f

Please sign in to comment.