Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Dex launcher dev #2

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
{
"format_version": 2,

"executors": [
{
"tasks": ["train"],
"executor": {
"path": "custom_executor.CustomExecutor",
"args": {
"data_exchanger_id": "data_exchanger",
"data_exchange_path": "/tmp/nvflare/av_cn"
}
}
}
],
"task_result_filters": [
],
"task_data_filters": [
],
"components": [
{
"id": "data_exchanger",
"path": "nvflare.app_opt.h5.data_exchanger.H5DataExchanger",
"args": {
"pipe_role": "x",
"heartbeat_timeout": 0
}
}
]
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

from nvflare.apis.fl_context import FLContext
from nvflare.apis.shareable import Shareable
from nvflare.app_common.executors.launcher_executor import (
LauncherExecutor,
model_data_to_shareable,
shareable_to_model_data,
)


class CustomExecutor(LauncherExecutor):
def __init__(
self,
data_exchanger_id: str,
data_exchange_path: str,
file_accessor_id: Optional[str] = None,
get_timeout: Optional[float] = 10000,
):
"""CustomExecutor for autonomous vehicle training."""
super().__init__(
data_exchanger_id=data_exchanger_id,
file_accessor_id=file_accessor_id,
data_exchange_path=data_exchange_path,
)

self._timeout = get_timeout
self._rounds = 0

def _prepare_for_launch(self, shareable: Shareable):
# dump weights for outer script to read
model_data = shareable_to_model_data(shareable=shareable)
self.data_exchanger.put(self._from_nvflare, data=model_data)
self.data_exchanger.put("round_starts", {"round": self._rounds})

def _get_result(self, task_name: str, fl_ctx: FLContext) -> Shareable:
try:
output_model_data = self.data_exchanger.get(self._to_nvflare, self._timeout)
round_ends = self.data_exchanger.get("round_ends", self._timeout)
external_round = round_ends["round"]
if external_round != self._rounds:
raise RuntimeError("rounds mismatch.")
self._rounds += 1
result = model_data_to_shareable(output_model_data)
return result
except Exception as e:
err_msg = f"External training is not finished within timeout ({self._timeout}) seconds: {e}."
self.log_exception(fl_ctx, err_msg)
self.system_panic(err_msg, fl_ctx)
return None
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
{
"format_version": 2,

"server": {
"heart_beat_timeout": 600
},
"task_data_filters": [],
"task_result_filters": [],
"components": [
{
"id": "persistor",
"name": "PTFileModelPersistor",
"args": {
"model": {
"path": "simple_network.SimpleNetwork"
}
}
},
{
"id": "shareable_generator",
"path": "nvflare.app_common.shareablegenerators.full_model_shareable_generator.FullModelShareableGenerator",
"args": {}
},
{
"id": "aggregator",
"path": "nvflare.app_common.aggregators.intime_accumulate_model_aggregator.InTimeAccumulateWeightedAggregator",
"args": {
"expected_data_kind": "WEIGHTS"
}
},
{
"id": "tb_analytics_receiver",
"name": "TBAnalyticsReceiver",
"args": {"events": ["fed.analytix_log_stats"]}
}
],
"workflows": [
{
"id": "scatter_and_gather",
"name": "ScatterAndGather",
"args": {
"min_clients" : 2,
"num_rounds" : 10,
"start_round": 0,
"wait_time_after_min_received": 0,
"aggregator_id": "aggregator",
"persistor_id": "persistor",
"shareable_generator_id": "shareable_generator",
"train_task_name": "train",
"train_timeout": 0
}
}
]
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
# Copyright (c) 2021, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import torch.nn as nn
import torch.nn.functional as F


class SimpleNetwork(nn.Module):
def __init__(self):
super(SimpleNetwork, self).__init__()

self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
{
"format_version": 2,

"executors": [
{
"tasks": ["train"],
"executor": {
"path": "custom_executor.CustomExecutor",
"args": {
"data_exchanger_id": "data_exchanger",
"data_exchange_path": "/tmp/nvflare/av_us"
}
}
}
],
"task_result_filters": [
],
"task_data_filters": [
],
"components": [
{
"id": "data_exchanger",
"path": "nvflare.app_opt.h5.data_exchanger.H5DataExchanger",
"args": {
"pipe_role": "x",
"heartbeat_timeout": 0
}
}
]
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

from nvflare.apis.fl_context import FLContext
from nvflare.apis.shareable import Shareable
from nvflare.app_common.executors.launcher_executor import (
LauncherExecutor,
model_data_to_shareable,
shareable_to_model_data,
)


class CustomExecutor(LauncherExecutor):
def __init__(
self,
data_exchanger_id: str,
data_exchange_path: str,
file_accessor_id: Optional[str] = None,
get_timeout: Optional[float] = 10000,
):
"""CustomExecutor for autonomous vehicle training."""
super().__init__(
data_exchanger_id=data_exchanger_id,
file_accessor_id=file_accessor_id,
data_exchange_path=data_exchange_path,
)

self._timeout = get_timeout
self._rounds = 0

def _prepare_for_launch(self, shareable: Shareable):
# dump weights for outer script to read
model_data = shareable_to_model_data(shareable=shareable)
self.data_exchanger.put(self._from_nvflare, data=model_data)
self.data_exchanger.put("round_starts", {"round": self._rounds})

def _get_result(self, task_name: str, fl_ctx: FLContext) -> Shareable:
try:
output_model_data = self.data_exchanger.get(self._to_nvflare, self._timeout)
round_ends = self.data_exchanger.get("round_ends", self._timeout)
external_round = round_ends["round"]
if external_round != self._rounds:
raise RuntimeError("rounds mismatch.")
self._rounds += 1
result = model_data_to_shareable(output_model_data)
return result
except Exception as e:
err_msg = f"External training is not finished within timeout ({self._timeout}) seconds: {e}."
self.log_exception(fl_ctx, err_msg)
self.system_panic(err_msg, fl_ctx)
return None
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
{
"name": "av",
"resource_spec": {},
"min_clients" : 2,
"deploy_map": {
"app_server": [
"server"
],
"app_us": [
"site-1"
],
"app_cn": [
"site-2"
]
}
}
Loading