Skip to content

A simple visualization tool for tensor activation in CNN.

License

Notifications You must be signed in to change notification settings

YudeWang/visactivation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation

visactivation

Written by YudeWang

A simple visualization tool for tensor activation in CNN.

Install

pip install visactivation

Document

visactivation.Tensor2Color(tensor, input_type=None, image=None, image_weight=0.3, colormap=cv2.COLORMAP_JET, act_type='max', norm_type='all')

Coloring the feature map in CNN to visualize the corresponding activation intensity.

Parameters:

  • tensor (numpy.ndarray) - the input tensor for visualization
  • input_type (str) - 'NCHW', 'NHW','CHW','HW'. When tensor.ndim == 3, input_type must be given.
  • image (numpy.ndarray, optional) - corresponding image with size NHW3 or HW3
  • image_weight (float, optional) - weight of image when visualization activation
  • colormap (int, str)
    • int - cv2.COLORMAP_xxx can be used here
    • str - 'voc' PASCAL VOC colormap, 'random' Random colormap
  • act_type (str) - 'sum', 'max', 'mean', 'none'.
    • 'sum' - choose the sum value in channel dimension for each spatial pixel
    • 'max' - choose the max value in channel dimension for each spatial pixel
    • 'mean' - choose the mean value in channel dimension for each spatial pixel
    • 'none' - preseve the activation of C channels and visualize them independently.
  • norm_type (str) - 'relu','all'.
    • 'relu' - tensor[tensor<0]=0, tensor/max(tensor)
    • 'all' - (tensor-min)/(max-min)

Return:

N x C x H x W x 3 size numpy ndarray

visactivation.Prob2Color(tensor, input_type=None, image=None, image_weight=0.3, colormap=cv2.COLORMAP_JET, act_type='max')

Coloring the probability map in CNN to visualize the corresponding activation intensity.

Parameters:

  • tensor (numpy.ndarray) - the input tensor for visualization, the value should in range [0,1]
  • input_type (str) - 'NCHW', 'NHW','CHW','HW'. When tensor.ndim == 3, input_type must be given.
  • image (numpy.ndarray, optional) - corresponding image with size NHW3 or HW3
  • image_weight (float, optional) - weight of image when visualization activation
  • colormap (int, str)
    • int - cv2.COLORMAP_xxx can be used here
    • str - 'voc' PASCAL VOC colormap, 'random' Random colormap
  • act_type (str) - 'sum', 'max', 'mean', 'none'.
    • 'sum' - choose the sum value in channel dimension for each spatial pixel. The result larger than 1 is cut off to 1.
    • 'max' - choose the max value in channel dimension for each spatial pixel
    • 'mean' - choose the mean value in channel dimension for each spatial pixel
    • 'none' - preseve the activation of C channels and visualize them independently.

Return:

N x C x H x W x 3 size numpy ndarray

visactivation.Label2Color(tensor, image=None, image_weight=0.3, colormap='random')

Coloring the label map predicted by to visualize the corresponding activation intensity.

Parameters:

  • tensor (numpy.ndarray) - the input label for visualization, the value should in be positive integer in [0, 255].
  • image (numpy.ndarray, optional) - corresponding image with size NHW3 or HW3
  • image_weight (float, optional) - weight of image when visualization activation
  • colormap (str) - 'voc' PASCAL VOC colormap, 'random' Random colormap

Return:

N x H x W x 3 size numpy ndarray

About

A simple visualization tool for tensor activation in CNN.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages