Review for Deep Learning with Time Series Data
TS2Vec(Towards Universal Representation of Time Series) 論文筆記
-
Datasets for training
- The data source uses Chung-Hao Lee's pre-screened anomalous events(ADDCAT)
ts2vec/datasets/DORA/df_event_all_v1.feather
- data preparation
transform_data_CHPrep.ipynb
- output at :
ts2vec/datasets/DORA/
- data :
dora.npz
(n, length, dim) - meta :
dora_meta.csv
- data :
- Pre-processing process for Finetune
ts2vec/datasets/prepare_DORA_KA51AG8742.ipynb
X_train.npz, X_test.npz, y_train.npz, y_test.npz
- The data source uses Chung-Hao Lee's pre-screened anomalous events(ADDCAT)
-
Training (in directory ts2vec/)
We use the self-supervised learning model ts2vec for training and feature extraction.- Pretrain commands
python3 train.py dora training --loader DORA --batch-size 16 --repr-dims 320 --epochs 500
- Get the embedding and dimension reduction
python3 get_embedding.py dora --checkpoint dora_b16_320d/model_500.pkl --repr-dims 320 --batch-size 1024 --umap
- Pretrain commands
-
Analysis and auto-labeling
- Representation Analysis
ts2vec/explore_feature.ipynb
- Validate appropriate hyperparameter settings
- Explore and analyze the representation
- Finetune and get more label
ts2vec/verify_label.ipynb
- Fine-tuning with vehicle_model : "KA51AG8742" datasets (with labels)
- train the classification model to detect anomalies
- Use fine-tuning model to infer all data and obtain the obtain labels for abnormal events (automatic labeling)