This repo is the official implementation of "Suppress-and-Refine Framework for End-to-End 3D Object Detection".
A simple, fast, efficient and end-to-end 3D object detector without NMS.
Method | backbone | mAP@0.25 | mAP@0.5 | Runtime (FPS) | Ckpt |
---|---|---|---|---|---|
VoteNet | PointNet++ | 62.9 | 39.9 | 10.8 | - |
H3DNet | 4xPointNet++ | 67.2 | 48.1 | 4.4 | - |
MLCVNet | PointNet++ | 64.5 | 41.4 | 6.7 | - |
BRNet | PointNet++ | 66.1 | 50.9 | 8.7 | - |
Group-Free | PointNet++ | 67.3 | 48.9 | 7.1 | - |
Ours | PointNet++ | 66.2 | 53.5 | 13.5 | model_ckpt |
Method | backbone | mAP@0.25 | mAP@0.5 | Ckpt |
---|---|---|---|---|
VoteNet | PointNet++ | 59.1 | 35.8 | - |
H3DNet | 4xPointNet++ | 60.1 | 39.0 | - |
MLCVNet | PointNet++ | 59.8 | - | - |
BRNet | PointNet++ | 61.1 | 43.7 | - |
Group-Free | PointNet++ | 63.0 | 45.2 | - |
Ours | PointNet++ | 60.0 | 44.7 | model_ckpt |
The FPS is tested on a V100 GPU.
Installation
This repository is based on mmdetection3d, please follow this page for installation guidance.
Reproduce our results on SCANNET and SUNRGBD
For SCANNET.
CUDA_VISIBLE_DEVICES=0,1 PORT=29600 ./tools/dist_train.sh configs/sr/scannet_baseline.py 2
For SUNRGBD
CUDA_VISIBLE_DEVICES=0,1 PORT=29600 ./tools/dist_train.sh configs/sr/sunrgbd_baseline.py 2
Evaluation
Please first download the ckpt from the ckpt link provided above.
Then for SCANNET.
./tools/dist_test.sh configs/sr/scannet_baseline.py epoch_30.pth 2 --eval mAP
For SUNRGBD
./tools/dist_test.sh configs/sr/sunrgbd_baseline.py epoch_33.pth 4 --eval mAP
Our code is based on wonderful mmdetection3d. Very apperciate their works!
If you find this project useful in your research, please consider cite:
@article{liu2021suppress,
title={Suppress-and-Refine Framework for End-to-End 3D Object Detection},
author={Liu, Zili and Xu, Guodong and Yang, Honghui and Chen, Minghao and Wu, Kuoliang and Yang, Zheng and Liu, Haifeng and Cai, Deng},
journal={arXiv preprint arXiv:2103.10042},
year={2021}
}