Skip to content

Commit

Permalink
Merge pull request FedML-AI#81 from FedML-AI/noniid-partition-for-seg…
Browse files Browse the repository at this point in the history
…mentation

Added changes to noniid_partition code for reusing in the segmentatio…

Former-commit-id: 8ca3483
  • Loading branch information
mitashimpi authored Dec 18, 2020
2 parents ed00997 + 77c117f commit 97047bb
Showing 1 changed file with 56 additions and 27 deletions.
83 changes: 56 additions & 27 deletions fedml_core/non_iid_partition/noniid_partition.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,14 @@
import numpy as np


def non_iid_partition_with_dirichlet_distribution(label_list, client_num, classification_num, alpha):
def non_iid_partition_with_dirichlet_distribution(label_list,
client_num,
classes,
alpha,
task='classification'):
"""
Obtain sample index list for each client from the Dirichlet distribution.
This LDA method is first proposed by :
Measuring the Effects of Non-Identical Data Distribution for
Federated Visual Classification (https://arxiv.org/pdf/1909.06335.pdf).
Expand All @@ -19,56 +23,81 @@ def non_iid_partition_with_dirichlet_distribution(label_list, client_num, classi
Parameters
----------
label_list : the label list from classification dataset
label_list : the label list from classification/segmentation dataset
client_num : number of clients
classification_num: the number of classification (e.g., 10 for CIFAR-10)
classes: the number of classification (e.g., 10 for CIFAR-10) OR a list of segmentation categories
alpha: a concentration parameter controlling the identicalness among clients.
task: CV specific task eg. classification, segmentation
Returns
-------
samples : ndarray,
The drawn samples, of shape ``(size, k)``.
"""
net_dataidx_map = {}
K = classes

# For multiclass labels, the list is ragged and not a numpy array
N = len(label_list) if task == 'segmentation' else label_list.shape[0]

K = classification_num
N = label_list.shape[0]
# guarantee the minimum number of sample in each client
min_size = 0
while min_size < 10:
idx_batch = [[] for _ in range(client_num)]

# for each classification in the dataset
for k in range(K):
# get a list of batch indexes which are belong to label k
idx_k = np.where(label_list == k)[0]
np.random.shuffle(idx_k)

# using dirichlet distribution to determine the unbalanced proportion for each client (n_nets in total)
# e.g., when n_nets = 4, proportions = [0.29543505 0.38414498 0.31998781 0.00043216], sum(proportions) = 1
proportions = np.random.dirichlet(np.repeat(alpha, client_num))

# get the index in idx_k according to the dirichlet distribution
proportions = np.array([p * (len(idx_j) < N / client_num) for p, idx_j in zip(proportions, idx_batch)])
proportions = proportions / proportions.sum()
proportions = (np.cumsum(proportions) * len(idx_k)).astype(int)[:-1]

# generate the batch list for each client
idx_batch = [idx_j + idx.tolist() for idx_j, idx in zip(idx_batch, np.split(idx_k, proportions))]
min_size = min([len(idx_j) for idx_j in idx_batch])
if task == 'segmentation':
# Unlike classification tasks, here, one instance may have multiple categories/classes
for c, cat in enumerate(classes):
if c > 0:
idx_k = np.asarray([np.any(label_list[i] == cat) and not np.any(
np.in1d(label_list[i], classes[:c])) for i in
range(len(label_list))])
else:
idx_k = np.asarray(
[np.any(label_list[i] == cat) for i in range(len(label_list))])

# Get the indices of images that have category = c
idx_k = np.where(idx_k)[0]
idx_batch, min_size = partition_class_samples_with_dirichlet_distribution(N, alpha, client_num,
idx_batch, idx_k)
else:
# for each classification in the dataset
for k in range(K):
# get a list of batch indexes which are belong to label k
idx_k = np.where(label_list == k)[0]
idx_batch, min_size = partition_class_samples_with_dirichlet_distribution(N, alpha, client_num,
idx_batch, idx_k)
for i in range(client_num):
np.random.shuffle(idx_batch[i])
net_dataidx_map[i] = idx_batch[i]

return net_dataidx_map


def record_data_stats(y_train, net_dataidx_map):
def partition_class_samples_with_dirichlet_distribution(N, alpha, client_num, idx_batch, idx_k):
np.random.shuffle(idx_k)
# using dirichlet distribution to determine the unbalanced proportion for each client (client_num in total)
# e.g., when client_num = 4, proportions = [0.29543505 0.38414498 0.31998781 0.00043216], sum(proportions) = 1
proportions = np.random.dirichlet(np.repeat(alpha, client_num))

# get the index in idx_k according to the dirichlet distribution
proportions = np.array([p * (len(idx_j) < N / client_num) for p, idx_j in zip(proportions, idx_batch)])
proportions = proportions / proportions.sum()
proportions = (np.cumsum(proportions) * len(idx_k)).astype(int)[:-1]

# generate the batch list for each client
idx_batch = [idx_j + idx.tolist() for idx_j, idx in zip(idx_batch, np.split(idx_k, proportions))]
min_size = min([len(idx_j) for idx_j in idx_batch])

return idx_batch, min_size


def record_data_stats(y_train, net_dataidx_map, task='classification'):
net_cls_counts = {}

for net_i, dataidx in net_dataidx_map.items():
unq, unq_cnt = np.unique(y_train[dataidx], return_counts=True)
unq, unq_cnt = np.unique(np.concatenate(y_train[dataidx]), return_counts=True) if task == 'segmentation' \
else np.unique(y_train[dataidx], return_counts=True)
tmp = {unq[i]: unq_cnt[i] for i in range(len(unq))}
net_cls_counts[net_i] = tmp
logging.debug('Data statistics: %s' % str(net_cls_counts))
return net_cls_counts
return net_cls_counts

0 comments on commit 97047bb

Please sign in to comment.