Official implementation of ["Saliency Prototype for RGB-D and RGB-T Salient Object Detection"], Zihao Zhang, Jie Wang, Yahong Han
Overall architecture of the Saliency Prototype Network
The provided environment is suggested for reproducing our results, similar configurations may also work.
conda create -n Spnet python=3.9.1
conda activate Spnet
git clone git@github.com:ZZ2490/SPNet.git
python train_rgbd.py
链接:https://pan.baidu.com/s/1Fv34jaMj6Xq6lb_NoygoLA 提取码:2490
链接:https://pan.baidu.com/s/1rlMeizCsLzZ_0tmnjxZxUQ 提取码:2490
链接:https://pan.baidu.com/s/1qLRw0tlVoCp95zVu4sn2tw 提取码:2490
# Saliency Prototype for RGB-D and RGB-T Salient Object Detection(ACM MM2023)
Official implementation of ["Saliency Prototype for RGB-D and RGB-T Salient Object Detection"], Zihao Zhang, Jie Wang, Yahong Han
![Image text](https://github.com/ZZ2490/SPNet/blob/main/f2.png)
Overall architecture of the Saliency Prototype Network
## Visual comparison results with other RGB-D models.
![Image text](https://github.com/ZZ2490/SPNet/blob/main/f5.png)
## Environment
### Requirements
#### Linux with Python ≥ 3.8
#### CUDA 11
#### The provided environment is suggested for reproducing our results, similar configurations may also work.
### Quick Start
conda create -n Spnet python=3.9.1
conda activate Spnet
git clone git@github.com:ZZ2490/SPNet.git
python train_rgbd.py
## RGBD Result Saliency Maps
链接:https://pan.baidu.com/s/1Fv34jaMj6Xq6lb_NoygoLA
提取码:2490
## RGBT Result Saliency Maps
链接:https://pan.baidu.com/s/1rlMeizCsLzZ_0tmnjxZxUQ
提取码:2490
## Evaluation Code
链接:https:pan.baidu.com/s/1qLRw0tlVoCp95zVu4sn2tw
提取码:2490
@Article{ SPNet, author = {Zihao Zhang, Jie Wang, Yahong Han}, title = {Saliency Prototype for RGB-D and RGB-T Salient Object Detection}, journal = {ACM International Conference on Multimedia}, year = {2023}, doi = {} }
Official implementation of ["Saliency Prototype for RGB-D and RGB-T Salient Object Detection"], Zihao Zhang, Jie Wang, Yahong Han
![Image text](https://github.com/ZZ2490/SPNet/blob/main/f2.png)
Overall architecture of the Saliency Prototype Network
## Visual comparison results with other RGB-D models.
![Image text](https://github.com/ZZ2490/SPNet/blob/main/f5.png)
## Environment
### Requirements
#### Linux with Python ≥ 3.8
#### CUDA 11
#### The provided environment is suggested for reproducing our results, similar configurations may also work.
### Quick Start
conda create -n Spnet python=3.9.1
conda activate Spnet
git clone git@github.com:ZZ2490/SPNet.git
python train_rgbd.py
## RGBD Result Saliency Maps
链接:https://pan.baidu.com/s/1Fv34jaMj6Xq6lb_NoygoLA
提取码:2490
## RGBT Result Saliency Maps
链接:https://pan.baidu.com/s/1rlMeizCsLzZ_0tmnjxZxUQ
提取码:2490
## Evaluation Code
链接:https:pan.baidu.com/s/1qLRw0tlVoCp95zVu4sn2tw
提取码:2490