If you have any problems, suggestions or improvements, please submit the issue or PR.
- [C^3 Framework] An open-source PyTorch code for crowd counting, which is released.
- [2019.05] [Chinese Blog] C^3 Framework系列之一:一个基于PyTorch的开源人群计数框架 [Link]
- [2019.04] Crowd counting from scratch [Link]
- [2017.11] Counting Crowds and Lines with AI [Link1] [Link2] [Code]
- Density Map Generation from Key Points [Matlab Code] [Python Code] [Fast Python Code]
- GCC Dataset [OneDrive / FangCloud / BaiduNetDisk (pwd:utdo)]
- JHU-CROWD Dataset [Link]
- DLR-ACD Dataset [Link]
- Crowd Surveillance Dataset [Baidu]
- Fudan-ShanghaiTech Dataset [Link / BaiduNetDisk (pwd:sgt1)]
- Venice Dataset [GoogleDrive]
- UCF-QNRF Dataset [Link / GoogleDrive]
- ShanghaiTech Dataset [Link: Dropbox / BaiduNetdisk]
- WorldExpo'10 Dataset [Link]
- UCF CC 50 Dataset [Link]
- Mall Dataset [Link]
- UCSD Dataset [Link]
- SmartCity Dataset [Link: GoogleDrive / BaiduNetdisk]
- AHU-Crowd Dataset [Link]
- CityStreet: Multi-View Crowd Counting Dataset [Link]
- Beijing-BRT-dataset [Link]
This section only includes the last ten papers since 2018 in arXiv.org. Previous papers will be hidden using <!--...-->
. If you want to view them, please open the raw file to read the source code. Note that all unpublished arXiv papers are not included into the leaderboard of performance.
- Robust Regression via Deep Negative Correlation Learning [paper]
- Deep Density-aware Count Regressor [paper][code]
- Video Crowd Counting via Dynamic Temporal Modeling [paper]
- Dense Scale Network for Crowd Counting [paper][unofficial code: PyTorch]
- Locate, Size and Count: Accurately Resolving People in Dense Crowds via Detection [paper][code]
- Content-aware Density Map for Crowd Counting and Density Estimation [paper]
- DENet: A Universal Network for Counting Crowd with Varying Densities and Scales [paper][code]
- Crowd Transformer Network [paper]
- W-Net: Reinforced U-Net for Density Map Estimation [paper][code]
- Crowd Counting with Decomposed Uncertainty [paper]
- [CCWld, SFCN] Learning from Synthetic Data for Crowd Counting in the Wild (CVPR2019) [paper] [Project] [arxiv]
- [SL2R] Exploiting Unlabeled Data in CNNs by Self-supervised Learning to Rank (T-PAMI) [paper](extension of L2R)
- [GWTA-CCNN] Almost Unsupervised Learning for Dense Crowd Counting (AAAI2019) [paper]
- [CAC] Class-Agnostic Counting (ACCV2018) [paper] [code]
- [L2R] Leveraging Unlabeled Data for Crowd Counting by Learning to Rank (CVPR2018) [paper] [code]
- [SSR] From Semi-Supervised to Transfer Counting of Crowds (ICCV2013) [paper]
- Beyond Counting:Comparisons of Density Maps for Crowd Analysis Tasks (T-CSVT2018) [paper][arxiv]
- A Survey of Recent Advances in CNN-based Single Image Crowd Counting and Density Estimation (PR Letters2018) [paper]
- Advances and Trends in Visual Crowd Analysis: A Systematic Survey and Evaluation of Crowd Modelling Techniques (Neurocomputing2016) [paper]
- An Evaluation of Crowd Counting Methods, Features and Regression Models (CVIU2015) [paper]
- Crowded Scene Analysis:A Survey (T-CSVT2015) [paper]
- Fast crowd density estimation with convolutional neural networks (AI2015) [paper]
- A Survey of Human-Sensing: Methods for Detecting Presence, Count, Location, Track, and Identity (CSUR2010) [paper]
- [CG-DRCN] Pushing the Frontiers of Unconstrained Crowd Counting: New Dataset and Benchmark Method (ICCV)[paper]
- [ADMG] Adaptive Density Map Generation for Crowd Counting (ICCV)[paper]
- [DSSINet] Crowd Counting with Deep Structured Scale Integration Network (ICCV) [paper][code]
- [RANet] Relational Attention Network for Crowd Counting (ICCV)[paper]
- [ANF] Attentional Neural Fields for Crowd Counting (ICCV)[paper]
- [SPANet] Learning Spatial Awareness to Improve Crowd Counting (ICCV(oral)) [paper]
- [MBTTBF] Multi-Level Bottom-Top and Top-Bottom Feature Fusion for Crowd Counting (ICCV) [paper]
- [CFF] Counting with Focus for Free (ICCV) [paper][code]
- [L2SM] Learn to Scale: Generating Multipolar Normalized Density Map for Crowd Counting (ICCV) [paper]
- [S-DCNet] From Open Set to Closed Set: Counting Objects by Spatial Divide-and-Conquer (ICCV) [paper][code]
- [BL] Bayesian Loss for Crowd Count Estimation with Point Supervision (ICCV(oral)) [paper][code]
- [PGCNet] Perspective-Guided Convolution Networks for Crowd Counting (ICCV) [paper][code]
- [SACANet] Crowd Counting on Images with Scale Variation and Isolated Clusters (ICCVW) [paper]
- [McML] Improving the Learning of Multi-column Convolutional Neural Network for Crowd Counting (ACM MM) [paper]
- [DADNet] DADNet: Dilated-Attention-Deformable ConvNet for Crowd Counting (ACM MM) [paper]
- [MRNet] Crowd Counting via Multi-layer Regression (ACM MM) [paper]
- [MRCNet] MRCNet: Crowd Counting and Density Map Estimation in Aerial and Ground Imagery (BMVCW)[paper]
- [E3D] Enhanced 3D convolutional networks for crowd counting (BMVC) [paper]
- [OSSS] One-Shot Scene-Specific Crowd Counting (BMVC) [paper]
- [RAZ-Net] Recurrent Attentive Zooming for Joint Crowd Counting and Precise Localization (CVPR) [paper]
- [RDNet] Density Map Regression Guided Detection Network for RGB-D Crowd Counting and Localization (CVPR) [paper][code]
- [RRSP] Residual Regression with Semantic Prior for Crowd Counting (CVPR) [paper][code]
- [MVMS] Wide-Area Crowd Counting via Ground-Plane Density Maps and Multi-View Fusion CNNs (CVPR) [paper] [Project] [Dataset&Code]
- [AT-CFCN] Leveraging Heterogeneous Auxiliary Tasks to Assist Crowd Counting (CVPR) [paper]
- [TEDnet] Crowd Counting and Density Estimation by Trellis Encoder-Decoder Networks (CVPR) [paper]
- [CAN] Context-Aware Crowd Counting (CVPR) [paper] [code]
- [PACNN] Revisiting Perspective Information for Efficient Crowd Counting (CVPR)[paper]
- [PSDDN] Point in, Box out: Beyond Counting Persons in Crowds (CVPR(oral))[paper]
- [ADCrowdNet] ADCrowdNet: An Attention-injective Deformable Convolutional Network for Crowd Understanding (CVPR) [paper]
- [CCWld, SFCN] Learning from Synthetic Data for Crowd Counting in the Wild (CVPR) [paper] [Project] [arxiv]
- [SL2R] Exploiting Unlabeled Data in CNNs by Self-supervised Learning to Rank (T-PAMI) [paper](extension of L2R)
- [IA-DNN] Inverse Attention Guided Deep Crowd Counting Network (AVSS) [paper]
- [MTCNet] MTCNET: Multi-task Learning Paradigm for Crowd Count Estimation (AVSS) [paper]
- [CODA] CODA: Counting Objects via Scale-aware Adversarial Density Adaption (ICME) [paper][code]
- [LSTN] Locality-Constrained Spatial Transformer Network for Video Crowd Counting (ICME(oral)) [paper]
- [DRD] Dynamic Region Division for Adaptive Learning Pedestrian Counting (ICME) [paper]
- [MVSAN] Crowd Counting via Multi-View Scale Aggregation Networks (ICME) [paper]
- [ASD] Adaptive Scenario Discovery for Crowd Counting (ICASSP) [paper]
- [SAAN] Crowd Counting Using Scale-Aware Attention Networks (WACV) [paper]
- [SPN] Scale Pyramid Network for Crowd Counting (WACV) [paper]
- [GWTA-CCNN] Almost Unsupervised Learning for Dense Crowd Counting (AAAI) [paper]
- [GPC] Geometric and Physical Constraints for Drone-Based Head Plane Crowd Density Estimation (IROS) [paper]
- [PCC-Net] PCC Net: Perspective Crowd Counting via Spatial Convolutional Network (T-CSVT) [paper] [code]
- [CLPC] Cross-Line Pedestrian Counting Based on Spatially-Consistent Two-Stage Local Crowd Density Estimation and Accumulation (T-CSVT) [paper]
- [CCLL] Crowd Counting With Limited Labeling Through Submodular Frame Selection (T-ITS) [paper]
- [ACSPNet] Atrous convolutions spatial pyramid network for crowd counting and density estimation (Neurocomputing) [paper]
- [DDCN] Removing background interference for crowd counting via de-background detail convolutional network (Neurocomputing) [paper]
- [MRA-CNN] Multi-resolution attention convolutional neural network for crowd counting (Neurocomputing) [paper]
- [ACM-CNN] Attend To Count: Crowd Counting with Adaptive Capacity Multi-scale CNNs (Neurocomputing) [paper]
- [SCAR] SCAR: Spatial-/Channel-wise Attention Regression Networks for Crowd Counting (Neurocomputing) [paper][code]
- [HA-CCN] HA-CCN: Hierarchical Attention-based Crowd Counting Network (TIP) [paper]
- [GMLCNN] Learning Multi-Level Density Maps for Crowd Counting (TNNLS) [paper]
- [SANet] Scale Aggregation Network for Accurate and Efficient Crowd Counting (ECCV) [paper]
- [ic-CNN] Iterative Crowd Counting (ECCV) [paper]
- [CL] Composition Loss for Counting, Density Map Estimation and Localization in Dense Crowds (ECCV) [paper]
- [LCFCN] Where are the Blobs: Counting by Localization with Point Supervision (ECCV) [paper] [code]
- [CSR] CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes (CVPR) [paper] [code]
- [L2R] Leveraging Unlabeled Data for Crowd Counting by Learning to Rank (CVPR) [paper] [code]
- [ACSCP] Crowd Counting via Adversarial Cross-Scale Consistency Pursuit (CVPR) [paper] [unofficial code: PyTorch]
- [DecideNet] DecideNet: Counting Varying Density Crowds Through Attention Guided Detection and Density (CVPR) [paper]
- [AMDCN] An Aggregated Multicolumn Dilated Convolution Network for Perspective-Free Counting (CVPRW) [paper] [code]
- [D-ConvNet] Crowd Counting with Deep Negative Correlation Learning (CVPR) [paper] [code]
- [IG-CNN] Divide and Grow: Capturing Huge Diversity in Crowd Images with Incrementally Growing CNN (CVPR) [paper]
- [SCNet] In Defense of Single-column Networks for Crowd Counting (BMVC) [paper]
- [AFP] Crowd Counting by Adaptively Fusing Predictions from an Image Pyramid (BMVC) [paper]
- [DRSAN] Crowd Counting using Deep Recurrent Spatial-Aware Network (IJCAI) [paper]
- [TDF-CNN] Top-Down Feedback for Crowd Counting Convolutional Neural Network (AAAI) [paper]
- [CAC] Class-Agnostic Counting (ACCV) [paper] [code]
- [A-CCNN] A-CCNN: Adaptive CCNN for Density Estimation and Crowd Counting (ICIP) [paper]
- Crowd Counting with Fully Convolutional Neural Network (ICIP) [paper]
- [MS-GAN] Multi-scale Generative Adversarial Networks for Crowd Counting (ICPR) [paper]
- [DR-ResNet] A Deeply-Recursive Convolutional Network for Crowd Counting (ICASSP) [paper]
- [GAN-MTR] Crowd Counting With Minimal Data Using Generative Adversarial Networks For Multiple Target Regression (WACV) [paper]
- [SaCNN] Crowd counting via scale-adaptive convolutional neural network (WACV) [paper] [code]
- [Improved SaCNN] Improved Crowd Counting Method Based on Scale-Adaptive Convolutional Neural Network (IEEE Access) [paper]
- [DA-Net] DA-Net: Learning the Fine-Grained Density Distribution With Deformation Aggregation Network (IEEE Access) [paper][code]
- [BSAD] Body Structure Aware Deep Crowd Counting (TIP) [paper]
- [NetVLAD] Multiscale Multitask Deep NetVLAD for Crowd Counting (TII) [paper] [code]
- [W-VLAD] Crowd Counting via Weighted VLAD on Dense Attribute Feature Maps (T-CSVT) [paper]
- [CP-CNN] Generating High-Quality Crowd Density Maps using Contextual Pyramid CNNs (ICCV) [paper]
- [ConvLSTM] Spatiotemporal Modeling for Crowd Counting in Videos (ICCV) [paper]
- [CMTL] CNN-based Cascaded Multi-task Learning of High-level Prior and Density Estimation for Crowd Counting (AVSS) [paper] [code]
- [ResnetCrowd] ResnetCrowd: A Residual Deep Learning Architecture for Crowd Counting, Violent Behaviour Detection and Crowd Density Level Classification (AVSS) [paper]
- [Switching CNN] Switching Convolutional Neural Network for Crowd Counting (CVPR) [paper] [code]
- [DAL-SVR] Boosting deep attribute learning via support vector regression for fast moving crowd counting (PR Letters) [paper]
- [MSCNN] Multi-scale Convolution Neural Networks for Crowd Counting (ICIP) [paper] [code]
- [FCNCC] Fully Convolutional Crowd Counting On Highly Congested Scenes (VISAPP) [paper]
- [Hydra-CNN] Towards perspective-free object counting with deep learning (ECCV) [paper] [code]
- [CNN-Boosting] Learning to Count with CNN Boosting (ECCV) [paper]
- [Crossing-line] Crossing-line Crowd Counting with Two-phase Deep Neural Networks (ECCV) [paper]
- [CrowdNet] CrowdNet: A Deep Convolutional Network for Dense Crowd Counting (ACMMM) [paper] [code]
- [MCNN] Single-Image Crowd Counting via Multi-Column Convolutional Neural Network (CVPR) [paper] [unofficial code: TensorFlow PyTorch]
- [Shang 2016] End-to-end crowd counting via joint learning local and global count (ICIP) [paper]
- [RPF] Crowd Density Estimation based on Rich Features and Random Projection Forest (WACV) [paper]
- [CS-SLR] Cost-sensitive sparse linear regression for crowd counting with imbalanced training data (ICME) [paper]
- [Faster-OHEM-KCF] Deep People Counting with Faster R-CNN and Correlation Tracking (ICME) [paper]
- [COUNT Forest] COUNT Forest: CO-voting Uncertain Number of Targets using Random Forest for Crowd Density Estimation (ICCV) [paper]
- [Bayesian] Bayesian Model Adaptation for Crowd Counts (ICCV) [paper]
- [Zhang 2015] Cross-scene Crowd Counting via Deep Convolutional Neural Networks (CVPR) [paper] [code]
- [Wang 2015] Deep People Counting in Extremely Dense Crowds (ACMMM) [paper]
- [Arteta 2014] Interactive Object Counting (ECCV) [paper]
- [Idrees 2013] Multi-Source Multi-Scale Counting in Extremely Dense Crowd Images (CVPR) [paper]
- [Ma 2013] Crossing the Line: Crowd Counting by Integer Programming with Local Features (CVPR) [paper]
- [SSR] From Semi-Supervised to Transfer Counting of Crowds (ICCV) [paper]
- [Chen 2012] Feature mining for localised crowd counting (BMVC) [paper]
- [Lempitsky 2010] Learning To Count Objects in Images (NIPS) [paper]
- [Chan 2008] Privacy preserving crowd monitoring: Counting people without people models or tracking (CVPR) [paper]
The section is being continually updated. Note that some values have superscript, which indicates their source.
Year-Conference/Journal | Methods | MAE | MSE | PSNR | SSIM | Params | Pre-trained Model |
---|---|---|---|---|---|---|---|
2016--CVPR | MCNN | 110.2 | 173.2 | 21.4CSR | 0.52CSR | 0.13MSANet | None |
2017--AVSS | CMTL | 101.3 | 152.4 | - | - | - | None |
2017--CVPR | Switching CNN | 90.4 | 135.0 | - | - | 15.11MSANet | VGG-16 |
2017--ICIP | MSCNN | 83.8 | 127.4 | - | - | - | - |
2017--ICCV | CP-CNN | 73.6 | 106.4 | 21.72CP-CNN | 0.72CP-CNN | 68.4MSANet | - |
2018--AAAI | TDF-CNN | 97.5 | 145.1 | - | - | - | - |
2018--WACV | SaCNN | 86.8 | 139.2 | - | - | - | - |
2018--CVPR | ACSCP | 75.7 | 102.7 | - | - | 5.1M | None |
2018--CVPR | D-ConvNet-v1 | 73.5 | 112.3 | - | - | - | - |
2018--CVPR | IG-CNN | 72.5 | 118.2 | - | - | - | - |
2018--CVPR | L2R (Multi-task, Query-by-example) | 72.0 | 106.6 | - | - | - | VGG-16 |
2018--CVPR | L2R (Multi-task, Keyword) | 73.6 | 112.0 | - | - | - | VGG-16 |
2018--IJCAI | DRSAN | 69.3 | 96.4 | - | - | - | - |
2018--ECCV | ic-CNN (one stage) | 69.8 | 117.3 | - | - | - | - |
2018--ECCV | ic-CNN (two stages) | 68.5 | 116.2 | - | - | - | - |
2018--CVPR | CSRNet | 68.2 | 115.0 | 23.79 | 0.76 | 16.26MSANet | VGG-16 |
2018--ECCV | SANet | 67.0 | 104.5 | - | - | 0.91M | None |
2019--AAAI | GWTA-CCNN | 154.7 | 229.4 | - | - | - | - |
2019--ICASSP | ASD | 65.6 | 98.0 | - | - | - | - |
2019--ICCV | CFF | 65.2 | 109.4 | 25.4 | 0.78 | - | - |
2019--CVPR | SFCN | 64.8 | 107.5 | - | - | - | - |
2019--ICCV | SPN+L2SM | 64.2 | 98.4 | - | - | - | - |
2019--CVPR | TEDnet | 64.2 | 109.1 | 25.88 | 0.83 | 1.63M | - |
2019--CVPR | ADCrowdNet(AMG-bAttn-DME) | 63.2 | 98.9 | 24.48 | 0.88 | - | - |
2019--CVPR | PACNN | 66.3 | 106.4 | - | - | - | - |
2019--CVPR | PACNN+CSRNet | 62.4 | 102.0 | - | - | - | - |
2019--CVPR | CAN | 62.3 | 100.0 | - | - | - | - |
2019--TIP | HA-CCN | 62.9 | 94.9 | - | - | - | - |
2019--ICCV | BL | 62.8 | 101.8 | - | - | - | - |
2019--WACV | SPN | 61.7 | 99.5 | - | - | - | - |
2019--ICCV | DSSINet | 60.63 | 96.04 | - | - | - | - |
2019--ICCV | MBTTBF-SCFB | 60.2 | 94.1 | - | - | - | - |
2019--ICCV | SPANet+SANet | 59.4 | 92.5 | - | - | - | - |
2019--ICCV | S-DCNet | 58.3 | 95.0 | - | - | - | - |
2019--ICCV | PGCNet | 57.0 | 86.0 | - | - | - | - |
Year-Conference/Journal | Methods | MAE | MSE |
---|---|---|---|
2016--CVPR | MCNN | 26.4 | 41.3 |
2017--ICIP | MSCNN | 17.7 | 30.2 |
2017--AVSS | CMTL | 20.0 | 31.1 |
2017--CVPR | Switching CNN | 21.6 | 33.4 |
2017--ICCV | CP-CNN | 20.1 | 30.1 |
2018--TIP | BSAD | 20.2 | 35.6 |
2018--WACV | SaCNN | 16.2 | 25.8 |
2018--CVPR | ACSCP | 17.2 | 27.4 |
2018--CVPR | CSRNet | 10.6 | 16.0 |
2018--CVPR | IG-CNN | 13.6 | 21.1 |
2018--CVPR | D-ConvNet-v1 | 18.7 | 26.0 |
2018--CVPR | DecideNet | 21.53 | 31.98 |
2018--CVPR | DecideNet + R3 | 20.75 | 29.42 |
2018--CVPR | L2R (Multi-task, Query-by-example) | 14.4 | 23.8 |
2018--CVPR | L2R (Multi-task, Keyword) | 13.7 | 21.4 |
2018--IJCAI | DRSAN | 11.1 | 18.2 |
2018--AAAI | TDF-CNN | 20.7 | 32.8 |
2018--ECCV | ic-CNN (one stage) | 10.4 | 16.7 |
2018--ECCV | ic-CNN (two stages) | 10.7 | 16.0 |
2018--ECCV | SANet | 8.4 | 13.6 |
2019--WACV | SPN | 9.4 | 14.4 |
2019--ICCV | PGCNet | 8.8 | 13.7 |
2019--ICASSP | ASD | 8.5 | 13.7 |
2019--CVPR | TEDnet | 8.2 | 12.8 |
2019--TIP | HA-CCN | 8.1 | 13.4 |
2019--CVPR | CAN | 7.8 | 12.2 |
2019--CVPR | ADCrowdNet(AMG-attn-DME) | 7.7 | 12.9 |
2019--CVPR | ADCrowdNet(AMG-DME) | 7.6 | 13.9 |
2019--CVPR | SFCN | 7.6 | 13.0 |
2019--CVPR | PACNN | 8.9 | 13.5 |
2019--CVPR | PACNN+CSRNet | 7.6 | 11.8 |
2019--ICCV | BL | 7.7 | 12.7 |
2019--ICCV | CFF | 7.2 | 12.2 |
2019--ICCV | SPN+L2SM | 7.2 | 11.1 |
2019--ICCV | DSSINet | 6.85 | 10.34 |
2019--ICCV | S-DCNet | 6.7 | 10.7 |
2019--ICCV | SPANet+SANet | 6.5 | 9.9 |
Year-Conference/Journal | Method | C-MAE | C-NAE | C-MSE | DM-MAE | DM-MSE | DM-HI | L- Av. Precision | L-Av. Recall | L-AUC |
---|---|---|---|---|---|---|---|---|---|---|
2013--CVPR | Idrees 2013CL | 315 | 0.63 | 508 | - | - | - | - | - | - |
2016--CVPR | MCNNCL | 277 | 0.55 | 0.006670 | 0.0223 | 0.5354 | 59.93% | 63.50% | 0.591 | |
2017--AVSS | CMTLCL | 252 | 0.54 | 514 | 0.005932 | 0.0244 | 0.5024 | - | - | - |
2017--CVPR | Switching CNNCL | 228 | 0.44 | 445 | 0.005673 | 0.0263 | 0.5301 | - | - | - |
2018--ECCV | CL | 132 | 0.26 | 191 | 0.00044 | 0.0017 | 0.9131 | 75.8% | 59.75% | 0.714 |
2019--TIP | HA-CCN | 118.1 | - | 180.4 | - | - | - | - | - | - |
2019--CVPR | TEDnet | 113 | - | 188 | - | - | - | - | - | - |
2019--CVPR | CAN | 107 | - | 183 | - | - | - | - | - | - |
2019--ICCV | SPN+L2SM | 104.7 | - | 173.6 | - | - | - | - | - | - |
2019--ICCV | S-DCNet | 104.4 | - | 176.1 | - | - | - | - | - | - |
2019--CVPR | SFCN | 102.0 | - | 171.4 | - | - | - | - | - | - |
2019--ICCV | DSSINet | 99.1 | - | 159.2 | - | - | - | - | - | - |
2019--ICCV | MBTTBF-SCFB | 97.5 | - | 165.2 | - | - | - | - | - | - |
2019--ICCV | BL | 88.7 | - | 154.8 | - | - | - | - | - | - |
Year-Conference/Journal | Methods | MAE | MSE |
---|---|---|---|
2013--CVPR | Idrees 2013 | 468.0 | 590.3 |
2015--CVPR | Zhang 2015 | 467.0 | 498.5 |
2016--ACM MM | CrowdNet | 452.5 | - |
2016--CVPR | MCNN | 377.6 | 509.1 |
2016--ECCV | CNN-Boosting | 364.4 | - |
2016--ECCV | Hydra-CNN | 333.73 | 425.26 |
2016--ICIP | Shang 2016 | 270.3 | - |
2017--ICIP | MSCNN | 363.7 | 468.4 |
2017--AVSS | CMTL | 322.8 | 397.9 |
2017--CVPR | Switching CNN | 318.1 | 439.2 |
2017--ICCV | CP-CNN | 298.8 | 320.9 |
2017--ICCV | ConvLSTM-nt | 284.5 | 297.1 |
2018--TIP | BSAD | 409.5 | 563.7 |
2018--AAAI | TDF-CNN | 354.7 | 491.4 |
2018--WACV | SaCNN | 314.9 | 424.8 |
2018--CVPR | IG-CNN | 291.4 | 349.4 |
2018--CVPR | ACSCP | 291.0 | 404.6 |
2018--CVPR | L2R (Multi-task, Query-by-example) | 291.5 | 397.6 |
2018--CVPR | L2R (Multi-task, Keyword) | 279.6 | 388.9 |
2018--CVPR | D-ConvNet-v1 | 288.4 | 404.7 |
2018--CVPR | CSRNet | 266.1 | 397.5 |
2018--ECCV | ic-CNN (two stages) | 260.9 | 365.5 |
2018--ECCV | SANet | 258.4 | 334.9 |
2018--IJCAI | DRSAN | 219.2 | 250.2 |
2019--AAAI | GWTA-CCNN | 433.7 | 583.3 |
2019--WACV | SPN | 259.2 | 335.9 |
2019--CVPR | ADCrowdNet(DME) | 257.1 | 363.5 |
2019--TIP | HA-CCN | 256.2 | 348.4 |
2019--CVPR | TEDnet | 249.4 | 354.5 |
2019--CVPR | PACNN | 267.9 | 357.8 |
2019--CVPR | PACNN+CSRNet | 241.7 | 320.7 |
2019--ICCV | MBTTBF-SCFB | 233.1 | 300.9 |
2019--ICCV | BL | 229.3 | 308.2 |
2019--ICCV | DSSINet | 216.9 | 302.4 |
2019--CVPR | SFCN | 214.2 | 318.2 |
2019--CVPR | CAN | 212.2 | 243.7 |
2019--ICCV | S-DCNet | 204.2 | 301.3 |
2019--ICASSP | ASD | 196.2 | 270.9 |
2019--ICCV | SPN+L2SM | 188.4 | 315.3 |
Year-Conference/Journal | Method | S1 | S2 | S3 | S4 | S5 | Avg. |
---|---|---|---|---|---|---|---|
2015--CVPR | Zhang 2015 | 9.8 | 14.1 | 14.3 | 22.2 | 3.7 | 12.9 |
2016--CVPR | MCNN | 3.4 | 20.6 | 12.9 | 13.0 | 8.1 | 11.6 |
2017--ICIP | MSCNN | 7.8 | 15.4 | 14.9 | 11.8 | 5.8 | 11.7 |
2017--ICCV | ConvLSTM-nt | 8.6 | 16.9 | 14.6 | 15.4 | 4.0 | 11.9 |
2017--ICCV | ConvLSTM | 7.1 | 15.2 | 15.2 | 13.9 | 3.5 | 10.9 |
2017--ICCV | Bidirectional ConvLSTM | 6.8 | 14.5 | 14.9 | 13.5 | 3.1 | 10.6 |
2017--CVPR | Switching CNN | 4.4 | 15.7 | 10.0 | 11.0 | 5.9 | 9.4 |
2017--ICCV | CP-CNN | 2.9 | 14.7 | 10.5 | 10.4 | 5.8 | 8.86 |
2018--AAAI | TDF-CNN | 2.7 | 23.4 | 10.7 | 17.6 | 3.3 | 11.5 |
2018--CVPR | IG-CNN | 2.6 | 16.1 | 10.15 | 20.2 | 7.6 | 11.3 |
2018--TIP | BSAD | 4.1 | 21.7 | 11.9 | 11.0 | 3.5 | 10.5 |
2018--ECCV | ic-CNN | 17.0 | 12.3 | 9.2 | 8.1 | 4.7 | 10.3 |
2018--CVPR | DecideNet | 2.0 | 13.14 | 8.9 | 17.4 | 4.75 | 9.23 |
2018--CVPR | D-ConvNet-v1 | 1.9 | 12.1 | 20.7 | 8.3 | 2.6 | 9.1 |
2018--CVPR | CSRNet | 2.9 | 11.5 | 8.6 | 16.6 | 3.4 | 8.6 |
2018--WACV | SaCNN | 2.6 | 13.5 | 10.6 | 12.5 | 3.3 | 8.5 |
2018--ECCV | SANet | 2.6 | 13.2 | 9.0 | 13.3 | 3.0 | 8.2 |
2018--IJCAI | DRSAN | 2.6 | 11.8 | 10.3 | 10.4 | 3.7 | 7.76 |
2018--CVPR | ACSCP | 2.8 | 14.05 | 9.6 | 8.1 | 2.9 | 7.5 |
2019--ICCV | PGCNet | 2.5 | 12.7 | 8.4 | 13.7 | 3.2 | 8.1 |
2019--CVPR | TEDnet | 2.3 | 10.1 | 11.3 | 13.8 | 2.6 | 8.0 |
2019--CVPR | PACNN | 2.3 | 12.5 | 9.1 | 11.2 | 3.8 | 7.8 |
2019--CVPR | ADCrowdNet(AMG-bAttn-DME) | 1.7 | 14.4 | 11.5 | 7.9 | 3.0 | 7.7 |
2019--CVPR | ADCrowdNet(AMG-attn-DME) | 1.6 | 13.2 | 8.7 | 10.6 | 2.6 | 7.3 |
2019--CVPR | CAN | 2.9 | 12.0 | 10.0 | 7.9 | 4.3 | 7.4 |
2019--CVPR | CAN(ECAN) | 2.4 | 9.4 | 8.8 | 11.2 | 4.0 | 7.2 |
2019--ICCV | DSSINet | 1.57 | 9.51 | 9.46 | 10.35 | 2.49 | 6.67 |
Year-Conference/Journal | Method | MAE | MSE |
---|---|---|---|
2015--CVPR | Zhang 2015 | 1.60 | 3.31 |
2016--ECCV | Hydra-CNN | 1.65 | - |
2016--ECCV | CNN-Boosting | 1.10 | - |
2016--CVPR | MCNN | 1.07 | 1.35 |
2017--ICCV | ConvLSTM-nt | 1.73 | 3.52 |
2017--CVPR | Switching CNN | 1.62 | 2.10 |
2017--ICCV | ConvLSTM | 1.30 | 1.79 |
2017--ICCV | Bidirectional ConvLSTM | 1.13 | 1.43 |
2018--CVPR | CSRNet | 1.16 | 1.47 |
2018--CVPR | ACSCP | 1.04 | 1.35 |
2018--ECCV | SANet | 1.02 | 1.29 |
2018--TIP | BSAD | 1.00 | 1.40 |
2019--WACV | SPN | 1.03 | 1.32 |
2019--ICCV | SPANet+SANet | 1.00 | 1.28 |
2019--CVPR | ADCrowdNet(DME) | 0.98 | 1.25 |
2019--BMVC | E3D | 0.93 | 1.17 |
2019--CVPR | PACNN | 0.89 | 1.18 |
Year-Conference/Journal | Method | MAE | MSE |
---|---|---|---|
2012--BMVC | Chen 2012 | 3.15 | 15.7 |
2016--ECCV | CNN-Boosting | 2.01 | - |
2017--ICCV | ConvLSTM-nt | 2.53 | 11.2 |
2017--ICCV | ConvLSTM | 2.24 | 8.5 |
2017--ICCV | Bidirectional ConvLSTM | 2.10 | 7.6 |
2018--CVPR | DecideNet | 1.52 | 1.90 |
2018--IJCAI | DRSAN | 1.72 | 2.1 |
2019--BMVC | E3D | 1.64 | 2.13 |
2019--WACV | SAAN | 1.28 | 1.68 |