Skip to content
/ Tex4D Public

Official Implementation of paper "Tex4D: Zero-shot 4D Scene Texturing with Video Diffusion Models"

License

Notifications You must be signed in to change notification settings

ZqlwMatt/Tex4D

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Website arXiv License

We present Tex4D, a zero-shot approach that integrates inherent 3D geometry knowledge from mesh sequences with the expressiveness of video diffusion models to produce multi-view and temporally consistent 4D textures. Given an untextured mesh sequence and a text prompt as inputs, our method generates multi-view, temporally consistent 4D textures.

Overview

  • Technical Report
  • Release inference code
  • Release data preprocess code

Installation

Please first run following commands to build dependencies:

git clone https://github.com/ZqlwMatt/Tex4D.git
cd Tex4D
conda create -n tex4d python=3.8
conda activate tex4d
pip install -r requirements.txt

Then install PyTorch3D through the following URL (check and replace your CUDA verison by running pytorch3d_install.py)

pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py38_cu117_pyt200/download.html

Quick Start

1. Preprocess

Generate the conditioning data for the video diffusion model based on the provided mesh sequences.

python visualize.py --render --data_folder "anim/boo" --pose_dir "pose_3" --load_from_data

2. Run

python run.py --config data/boo/config.yaml

Sample results

For more see our project webpage.

gallery_boo2_2.mp4
gallery_boo1_2.mp4
gallery_snowman2.mp4

Citation

@article{bao2024tex4d,
    title={Tex4D: Zero-shot 4D Scene Texturing with Video Diffusion Models}, 
    author={Jingzhi Bao and Xueting Li and Ming-Hsuan Yang},
    journal={arXiv preprint arxiv:2410.10821},
    year={2024}
}

About

Official Implementation of paper "Tex4D: Zero-shot 4D Scene Texturing with Video Diffusion Models"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages