Skip to content

ZwX1616/ROB535_cv_deploy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ROB535_cv_deploy

for in-class competition task1 & task2

curated by wx. zhang

for more details refer to the pdf report

Results:

Environment requirements:

  1. Python 3.6
  2. packages: mxnet, gluonbook, gluoncv, pandas, ...
  3. preferably mxnet-cu92 to use CUDA accerleration (mxnet-cu90 is recommended if you also use tf)
  4. if not using GPU, change all ctx to mx.cpu()

Directory strcuture:

root
├── data
│   ├── trainval
│       ├── 0cec3d1f-544c-4146-8632-84b1f9fe89d3
│           ├── (image, bbox, cloud, proj files)
│       ├── ...
│   ├── test
│       ├── 0ff0a23e-5f50-4461-8ccf-2b71bead2e8e
│           ├── (image, cloud, proj files)
│       ├── ...
│   ├── train.rec (7000 512*384 images + bbox labels)
│   ├── train.lst (bbox labels and filenames)
│   ├── valid.rec (573 512*384 images + bbox labels)
│   ├── valid.lst (bbox labels and filenames)
│   ├── train_v3.rec (7000 768*432 images + class labels)
│   ├── train_v3.lst (class labels and filenames)
│   ├── valid_v3.rec (573 768*432 images + class labels)
│   ├── valid_v3.lst (class labels and filenames)
│   ├── test_v3.rec (2631 768*432 images)
│   ├── test_v3.lst (a list of filenames)
│   ├── xyz_train.txt (XYZ coordinates training data)
│   ├── xyz_valid.txt (XYZ coordinates training data)
│   │
│   ├── classes.csv (class 0,1,2)
│   ├── classes_v2.csv (class 0,1,2,3,4,5)
├── mxnet-dbc
    ├── ...
├── mxnet-mlp
    ├── ...
├── mxnet-ssd (originally forked from https://github.com/zhreshold/mxnet-ssd)
    ├── ...
├── params
    ├── (network parameters for ssd and frcnn)
├── output
    ├── (txt files for kaggle upload)
├── README.md

(Note: .rec file is the mxnet RecordIO format, refer to https://github.com/leocvml/mxnet-im2rec_tutorial on how to generate them)

for task1:

  • train SSD: python mxnet-ssd/gta5_train.py
  • predict with SSD: python mxnet-ssd/gta5_predict.py 42
  • train Inception3 classifier: python mxnet-dbc/train.py
  • predict with Inception3 classifier: python mxnet-dbc/predict.py

for task2:

  • train MLP: python mxnet-mlp/mlp_train.py
  • (after predicting with SSD) predict with MLP: python mxnet-mlp/predict.py

About

for in-class competition task1 & task2

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages