Skip to content

Commit

Permalink
[Feature]: Support plot confusion matrix. (open-mmlab#6344)
Browse files Browse the repository at this point in the history
  • Loading branch information
RangiLyu authored and ZwwWayne committed Jul 18, 2022
1 parent a83fe04 commit 73ad0f7
Show file tree
Hide file tree
Showing 2 changed files with 279 additions and 0 deletions.
18 changes: 18 additions & 0 deletions docs/useful_tools.md
Original file line number Diff line number Diff line change
Expand Up @@ -472,3 +472,21 @@ differential_evolution step 489: f(x)= 0.386625
2021-07-19 19:46:40,776 - mmdet - INFO Anchor differential evolution result:[[10, 12], [15, 30], [32, 22], [29, 59], [61, 46], [57, 116], [112, 89], [154, 198], [349, 336]]
2021-07-19 19:46:40,798 - mmdet - INFO Result saved in work_dirs/anchor_optimize_result.json
```

## Confution Matrix

A confusion matrix is a summary of prediction results.

`tools/analysis_tools/confusion_matrix.py` can analyze the prediction results and plot a confution matrix table.

First, run `tools/test.py` to save the `.pkl` detection results.

Then, run

```
python tools/analysis_tools/confusion_matrix.py ${CONFIG} ${DETECTION_RESULTS} ${SAVE_DIR} --show
```

And you will get a confution matrix like this:

![confution_matrix_example](https://user-images.githubusercontent.com/12907710/140513068-994cdbf4-3a4a-48f0-8fd8-2830d93fd963.png)
261 changes: 261 additions & 0 deletions tools/analysis_tools/confusion_matrix.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,261 @@
import argparse
import os

import matplotlib.pyplot as plt
import mmcv
import numpy as np
from matplotlib.ticker import MultipleLocator
from mmcv import Config, DictAction
from mmcv.ops import nms

from mmdet.core.evaluation.bbox_overlaps import bbox_overlaps
from mmdet.datasets import build_dataset


def parse_args():
parser = argparse.ArgumentParser(
description='Generate confusion matrix from detection results')
parser.add_argument('config', help='test config file path')
parser.add_argument(
'prediction_path', help='prediction path where test .pkl result')
parser.add_argument(
'save_dir', help='directory where confusion matrix will be saved')
parser.add_argument(
'--show', action='store_true', help='show confusion matrix')
parser.add_argument(
'--color-theme',
default='plasma',
help='theme of the matrix color map')
parser.add_argument(
'--score-thr',
type=float,
default=0.3,
help='score threshold to filter detection bboxes')
parser.add_argument(
'--tp-iou-thr',
type=float,
default=0.5,
help='IoU threshold to be considered as matched')
parser.add_argument(
'--nms-iou-thr',
type=float,
default=None,
help='nms IoU threshold, only applied when users want to change the'
'nms IoU threshold.')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args


def calculate_confusion_matrix(dataset,
results,
score_thr=0,
nms_iou_thr=None,
tp_iou_thr=0.5):
"""Calculate the confusion matrix.
Args:
dataset (Dataset): Test or val dataset.
results (list[ndarray]): A list of detection results in each image.
score_thr (float|optional): Score threshold to filter bboxes.
Default: 0.
nms_iou_thr (float|optional): nms IoU threshold, the detection results
have done nms in the detector, only applied when users want to
change the nms IoU threshold. Default: None.
tp_iou_thr (float|optional): IoU threshold to be considered as matched.
Default: 0.5.
"""
num_classes = len(dataset.CLASSES)
confusion_matrix = np.zeros(shape=[num_classes + 1, num_classes + 1])
assert len(dataset) == len(results)
prog_bar = mmcv.ProgressBar(len(results))
for idx, per_img_res in enumerate(results):
if isinstance(per_img_res, tuple):
res_bboxes, _ = per_img_res
else:
res_bboxes = per_img_res
ann = dataset.get_ann_info(idx)
gt_bboxes = ann['bboxes']
labels = ann['labels']
analyze_per_img_dets(confusion_matrix, gt_bboxes, labels, res_bboxes,
score_thr, tp_iou_thr, nms_iou_thr)
prog_bar.update()
return confusion_matrix


def analyze_per_img_dets(confusion_matrix,
gt_bboxes,
gt_labels,
result,
score_thr=0,
tp_iou_thr=0.5,
nms_iou_thr=None):
"""Analyze detection results on each image.
Args:
confusion_matrix (ndarray): The confusion matrix,
has shape (num_classes + 1, num_classes + 1).
gt_bboxes (ndarray): Ground truth bboxes, has shape (num_gt, 4).
gt_labels (ndarray): Ground truth labels, has shape (num_gt).
result (ndarray): Detection results, has shape
(num_classes, num_bboxes, 5).
score_thr (float): Score threshold to filter bboxes.
Default: 0.
tp_iou_thr (float): IoU threshold to be considered as matched.
Default: 0.5.
nms_iou_thr (float|optional): nms IoU threshold, the detection results
have done nms in the detector, only applied when users want to
change the nms IoU threshold. Default: None.
"""
true_positives = np.zeros_like(gt_labels)
for det_label, det_bboxes in enumerate(result):
if nms_iou_thr:
det_bboxes, _ = nms(
det_bboxes[:, :4],
det_bboxes[:, -1],
nms_iou_thr,
score_threshold=score_thr)
ious = bbox_overlaps(det_bboxes[:, :4], gt_bboxes)
for i, det_bbox in enumerate(det_bboxes):
score = det_bbox[4]
det_match = 0
if score >= score_thr:
for j, gt_label in enumerate(gt_labels):
if ious[i, j] >= tp_iou_thr:
det_match += 1
if gt_label == det_label:
true_positives[j] += 1 # TP
confusion_matrix[gt_label, det_label] += 1
if det_match == 0: # BG FP
confusion_matrix[-1, det_label] += 1
for num_tp, gt_label in zip(true_positives, gt_labels):
if num_tp == 0: # FN
confusion_matrix[gt_label, -1] += 1


def plot_confusion_matrix(confusion_matrix,
labels,
save_dir=None,
show=True,
title='Normalized Confusion Matrix',
color_theme='plasma'):
"""Draw confusion matrix with matplotlib.
Args:
confusion_matrix (ndarray): The confusion matrix.
labels (list[str]): List of class names.
save_dir (str|optional): If set, save the confusion matrix plot to the
given path. Default: None.
show (bool): Whether to show the plot. Default: True.
title (str): Title of the plot. Default: `Normalized Confusion Matrix`.
color_theme (str): Theme of the matrix color map. Default: `plasma`.
"""
# normalize the confusion matrix
per_label_sums = confusion_matrix.sum(axis=1)[:, np.newaxis]
confusion_matrix = \
confusion_matrix.astype(np.float32) / per_label_sums * 100

num_classes = len(labels)
fig, ax = plt.subplots(
figsize=(0.5 * num_classes, 0.5 * num_classes * 0.8), dpi=180)
cmap = plt.get_cmap(color_theme)
im = ax.imshow(confusion_matrix, cmap=cmap)
plt.colorbar(mappable=im, ax=ax)

title_font = {'weight': 'bold', 'size': 12}
ax.set_title(title, fontdict=title_font)
label_font = {'size': 10}
plt.ylabel('Ground Truth Label', fontdict=label_font)
plt.xlabel('Prediction Label', fontdict=label_font)

# draw locator
xmajor_locator = MultipleLocator(1)
xminor_locator = MultipleLocator(0.5)
ax.xaxis.set_major_locator(xmajor_locator)
ax.xaxis.set_minor_locator(xminor_locator)
ymajor_locator = MultipleLocator(1)
yminor_locator = MultipleLocator(0.5)
ax.yaxis.set_major_locator(ymajor_locator)
ax.yaxis.set_minor_locator(yminor_locator)

# draw grid
ax.grid(True, which='minor', linestyle='-')

# draw label
ax.set_xticks(np.arange(num_classes))
ax.set_yticks(np.arange(num_classes))
ax.set_xticklabels(labels)
ax.set_yticklabels(labels)

ax.tick_params(
axis='x', bottom=False, top=True, labelbottom=False, labeltop=True)
plt.setp(
ax.get_xticklabels(), rotation=45, ha='left', rotation_mode='anchor')

# draw confution matrix value
for i in range(num_classes):
for j in range(num_classes):
ax.text(
j,
i,
'{}%'.format(int(confusion_matrix[i, j])),
ha='center',
va='center',
color='w',
size=7)

ax.set_ylim(len(confusion_matrix) - 0.5, -0.5) # matplotlib>3.1.1

fig.tight_layout()
if save_dir is not None:
plt.savefig(
os.path.join(save_dir, 'confusion_matrix.png'), format='png')
if show:
plt.show()


def main():
args = parse_args()

cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)

results = mmcv.load(args.prediction_path)
assert isinstance(results, list)
if isinstance(results[0], list):
pass
elif isinstance(results[0], tuple):
results = [result[0] for result in results]
else:
raise TypeError('invalid type of prediction results')

if isinstance(cfg.data.test, dict):
cfg.data.test.test_mode = True
elif isinstance(cfg.data.test, list):
for ds_cfg in cfg.data.test:
ds_cfg.test_mode = True
dataset = build_dataset(cfg.data.test)

confusion_matrix = calculate_confusion_matrix(dataset, results,
args.score_thr,
args.nms_iou_thr,
args.tp_iou_thr)
plot_confusion_matrix(
confusion_matrix,
dataset.CLASSES + ('background', ),
save_dir=args.save_dir,
show=args.show)


if __name__ == '__main__':
main()

0 comments on commit 73ad0f7

Please sign in to comment.