forked from opea-project/GenAIComps
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Multimodal dataprep (opea-project#575)
* multimodal embedding for MM RAG for videos Signed-off-by: Tiep Le <tiep.le@intel.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * develop data prep first commit Signed-off-by: Tiep Le <tiep.le@intel.com> * develop dataprep microservice for multimodal data Signed-off-by: Tiep Le <tiep.le@intel.com> * multimodal langchain for dataprep Signed-off-by: Tiep Le <tiep.le@intel.com> * update README Signed-off-by: Tiep Le <tiep.le@intel.com> * update README Signed-off-by: Tiep Le <tiep.le@intel.com> * update README Signed-off-by: Tiep Le <tiep.le@intel.com> * update README Signed-off-by: Tiep Le <tiep.le@intel.com> * cosmetic Signed-off-by: Tiep Le <tiep.le@intel.com> * test for multimodal dataprep Signed-off-by: Tiep Le <tiep.le@intel.com> * update test Signed-off-by: Tiep Le <tiep.le@intel.com> * update test Signed-off-by: Tiep Le <tiep.le@intel.com> * update test Signed-off-by: Tiep Le <tiep.le@intel.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * cosmetic update Signed-off-by: Tiep Le <tiep.le@intel.com> * remove langsmith Signed-off-by: Tiep Le <tiep.le@intel.com> * update API to remove /dataprep from API names and remove langsmith Signed-off-by: Tiep Le <tiep.le@intel.com> * update test Signed-off-by: Tiep Le <tiep.le@intel.com> * update the error message per PR reviewer Signed-off-by: Tiep Le <tiep.le@intel.com> --------- Signed-off-by: Tiep Le <tiep.le@intel.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Signed-off-by: Dong, Bo1 <bo1.dong@intel.com>
- Loading branch information
Showing
31 changed files
with
2,799 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,258 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import base64 | ||
import json | ||
import os | ||
import uuid | ||
from pathlib import Path | ||
from typing import Iterator | ||
|
||
import cv2 | ||
import requests | ||
import webvtt | ||
import whisper | ||
from moviepy.editor import VideoFileClip | ||
|
||
|
||
def create_upload_folder(upload_path): | ||
"""Create a directory to store uploaded video data.""" | ||
if not os.path.exists(upload_path): | ||
Path(upload_path).mkdir(parents=True, exist_ok=True) | ||
|
||
|
||
def load_json_file(file_path): | ||
"""Read contents of json file.""" | ||
with open(file_path, "r") as file: | ||
data = json.load(file) | ||
return data | ||
|
||
|
||
def clear_upload_folder(upload_path): | ||
"""Clear the upload directory.""" | ||
for root, dirs, files in os.walk(upload_path, topdown=False): | ||
for file in files: | ||
file_path = os.path.join(root, file) | ||
os.remove(file_path) | ||
for dir in dirs: | ||
dir_path = os.path.join(root, dir) | ||
os.rmdir(dir_path) | ||
|
||
|
||
def generate_video_id(): | ||
"""Generates a unique identifier for a video file.""" | ||
return str(uuid.uuid4()) | ||
|
||
|
||
def convert_video_to_audio(video_path: str, output_audio_path: str): | ||
"""Converts video to audio using MoviePy library that uses `ffmpeg` under the hood. | ||
:param video_path: file path of video file (.mp4) | ||
:param output_audio_path: file path of audio file (.wav) to be created | ||
""" | ||
video_clip = VideoFileClip(video_path) | ||
audio_clip = video_clip.audio | ||
audio_clip.write_audiofile(output_audio_path) | ||
video_clip.close() | ||
audio_clip.close() | ||
|
||
|
||
def load_whisper_model(model_name: str = "base"): | ||
"""Load a whisper model for generating video transcripts.""" | ||
return whisper.load_model(model_name) | ||
|
||
|
||
def extract_transcript_from_audio(whisper_model, audio_path: str): | ||
"""Generate transcript from audio file. | ||
:param whisper_model: a pre-loaded whisper model object | ||
:param audio_path: file path of audio file (.wav) | ||
""" | ||
options = dict(task="translate", best_of=5, language="en") | ||
return whisper_model.transcribe(audio_path, **options) | ||
|
||
|
||
def format_timestamp_for_transcript(seconds: float, always_include_hours: bool = True, fractionalSeperator: str = "."): | ||
"""Format timestamp for video transcripts.""" | ||
milliseconds = round(seconds * 1000.0) | ||
|
||
hours = milliseconds // 3_600_000 | ||
milliseconds -= hours * 3_600_000 | ||
|
||
minutes = milliseconds // 60_000 | ||
milliseconds -= minutes * 60_000 | ||
|
||
seconds = milliseconds // 1_000 | ||
milliseconds -= seconds * 1_000 | ||
|
||
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" | ||
return f"{hours_marker}{minutes:02d}:{seconds:02d}{fractionalSeperator}{milliseconds:03d}" | ||
|
||
|
||
def write_vtt(transcript: Iterator[dict], vtt_path: str): | ||
"""Write transcripts to a .vtt file.""" | ||
with open(vtt_path, "a") as file: | ||
file.write("WEBVTT\n\n") | ||
for segment in transcript["segments"]: | ||
text = (segment["text"]).replace("-->", "->") | ||
file.write( | ||
f"{format_timestamp_for_transcript(segment['start'])} --> {format_timestamp_for_transcript(segment['end'])}\n" | ||
) | ||
file.write(f"{text.strip()}\n\n") | ||
|
||
|
||
def delete_audio_file(audio_path: str): | ||
"""Delete audio file after extracting transcript.""" | ||
os.remove(audio_path) | ||
|
||
|
||
def time_to_frame(time: float, fps: float): | ||
"""Convert time in seconds into frame number.""" | ||
return int(time * fps - 1) | ||
|
||
|
||
def str2time(strtime: str): | ||
"""Get time in seconds from string.""" | ||
strtime = strtime.strip('"') | ||
hrs, mins, seconds = [float(c) for c in strtime.split(":")] | ||
|
||
total_seconds = hrs * 60**2 + mins * 60 + seconds | ||
|
||
return total_seconds | ||
|
||
|
||
def convert_img_to_base64(image): | ||
"Convert image to base64 string" | ||
_, buffer = cv2.imencode(".jpg", image) | ||
encoded_string = base64.b64encode(buffer) | ||
return encoded_string.decode() | ||
|
||
|
||
def extract_frames_and_annotations_from_transcripts(video_id: str, video_path: str, vtt_path: str, output_dir: str): | ||
"""Extract frames (.jpg) and annotations (.json) from video file (.mp4) and captions file (.vtt)""" | ||
# Set up location to store frames and annotations | ||
os.makedirs(output_dir, exist_ok=True) | ||
os.makedirs(os.path.join(output_dir, "frames"), exist_ok=True) | ||
|
||
# Load video and get fps | ||
vidcap = cv2.VideoCapture(video_path) | ||
fps = vidcap.get(cv2.CAP_PROP_FPS) | ||
|
||
# read captions file | ||
captions = webvtt.read(vtt_path) | ||
|
||
annotations = [] | ||
for idx, caption in enumerate(captions): | ||
start_time = str2time(caption.start) | ||
end_time = str2time(caption.end) | ||
|
||
mid_time = (end_time + start_time) / 2 | ||
text = caption.text.replace("\n", " ") | ||
|
||
frame_no = time_to_frame(mid_time, fps) | ||
mid_time_ms = mid_time * 1000 | ||
vidcap.set(cv2.CAP_PROP_POS_MSEC, mid_time_ms) | ||
success, frame = vidcap.read() | ||
|
||
if success: | ||
# Save frame for further processing | ||
img_fname = f"frame_{idx}" | ||
img_fpath = os.path.join(output_dir, "frames", img_fname + ".jpg") | ||
cv2.imwrite(img_fpath, frame) | ||
|
||
# Convert image to base64 encoded string | ||
b64_img_str = convert_img_to_base64(frame) | ||
|
||
# Create annotations for frame from transcripts | ||
annotations.append( | ||
{ | ||
"video_id": video_id, | ||
"video_name": os.path.basename(video_path), | ||
"b64_img_str": b64_img_str, | ||
"caption": text, | ||
"time": mid_time_ms, | ||
"frame_no": frame_no, | ||
"sub_video_id": idx, | ||
} | ||
) | ||
|
||
# Save transcript annotations as json file for further processing | ||
with open(os.path.join(output_dir, "annotations.json"), "w") as f: | ||
json.dump(annotations, f) | ||
|
||
vidcap.release() | ||
return annotations | ||
|
||
|
||
def use_lvm(endpoint: str, img_b64_string: str, prompt: str = "Provide a short description for this scene."): | ||
"""Generate image captions/descriptions using LVM microservice.""" | ||
inputs = {"image": img_b64_string, "prompt": prompt, "max_new_tokens": 32} | ||
response = requests.post(url=endpoint, data=json.dumps(inputs)) | ||
print(response) | ||
return response.json()["text"] | ||
|
||
|
||
def extract_frames_and_generate_captions( | ||
video_id: str, video_path: str, lvm_endpoint: str, output_dir: str, key_frame_per_second: int = 1 | ||
): | ||
"""Extract frames (.jpg) and annotations (.json) from video file (.mp4) by generating captions using LVM microservice.""" | ||
# Set up location to store frames and annotations | ||
os.makedirs(output_dir, exist_ok=True) | ||
os.makedirs(os.path.join(output_dir, "frames"), exist_ok=True) | ||
|
||
# Load video and get fps | ||
vidcap = cv2.VideoCapture(video_path) | ||
fps = vidcap.get(cv2.CAP_PROP_FPS) | ||
|
||
annotations = [] | ||
hop = round(fps / key_frame_per_second) | ||
curr_frame = 0 | ||
idx = -1 | ||
|
||
while True: | ||
ret, frame = vidcap.read() | ||
if not ret: | ||
break | ||
|
||
if curr_frame % hop == 0: | ||
idx += 1 | ||
|
||
mid_time = vidcap.get(cv2.CAP_PROP_POS_MSEC) | ||
mid_time_ms = mid_time * 1000 | ||
|
||
frame_no = curr_frame | ||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | ||
|
||
# Save frame for further processing | ||
img_fname = f"frame_{idx}" | ||
img_fpath = os.path.join(output_dir, "frames", img_fname + ".jpg") | ||
cv2.imwrite(img_fpath, frame) | ||
|
||
# Convert image to base64 encoded string | ||
b64_img_str = convert_img_to_base64(frame) | ||
|
||
# Caption generation using LVM microservice | ||
caption = use_lvm(lvm_endpoint, b64_img_str) | ||
caption = caption.strip() | ||
text = caption.replace("\n", " ") | ||
|
||
# Create annotations for frame from transcripts | ||
annotations.append( | ||
{ | ||
"video_id": video_id, | ||
"video_name": os.path.basename(video_path), | ||
"b64_img_str": b64_img_str, | ||
"caption": text, | ||
"time": mid_time_ms, | ||
"frame_no": frame_no, | ||
"sub_video_id": idx, | ||
} | ||
) | ||
|
||
curr_frame += 1 | ||
|
||
# Save caption annotations as json file for further processing | ||
with open(os.path.join(output_dir, "annotations.json"), "w") as f: | ||
json.dump(annotations, f) | ||
|
||
vidcap.release() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.