Skip to content

KT-Net: Knowledge Transfer for Unpaired 3D Shape Completion

License

Notifications You must be signed in to change notification settings

a4152684/KT-Net

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

KT-Net: Knowledge Transfer for Unpaired 3D Shape Completion

Requirements

  • Ubuntu 14.04 or higher
  • CUDA 10.0 or higher
  • Python v3.7 or higher
  • Pytorch v1.2 or higher

Specifically, The code has been tested with:

  • Ubuntu 18.04, CUDA 10.2, python 3.8.15, Pytorch 1.6.0, GeForce RTX 2080Ti.

Installation

  • Create the conda environment.
    conda create -n kt-net python=3.8
    conda activate kt-net
    
  • Intall some packages.
    pip install -r requirements.txt
    
  • Install EMD.
    cd net/util/emd_module
    python setup.py install
    cd ../../..
    

Dataset & Pretrained model

Train && Test

To train the model, you can edit the parameter in the file train_KT.sh and run the command:

sh train_KT.sh

To test the model, you can edit the parameter in the file test_KT.sh and run the command:

sh test_KT.sh

Acknowledgement

The code is in part built on MSC. The original code of emd is rendered from MSN. The original code of chamfer3D is rendered from "chamferDistancePytorch".

About

KT-Net: Knowledge Transfer for Unpaired 3D Shape Completion

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published