Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update content in top-level README #2727

Merged
merged 14 commits into from
Feb 1, 2024
17 changes: 13 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,8 +33,7 @@ design of Flower is based on a few guiding principles:

- **Framework-agnostic**: Different machine learning frameworks have different
strengths. Flower can be used with any machine learning framework, for
example, [PyTorch](https://pytorch.org),
[TensorFlow](https://tensorflow.org), [Hugging Face Transformers](https://huggingface.co/), [PyTorch Lightning](https://pytorchlightning.ai/), [scikit-learn](https://scikit-learn.org/), [JAX](https://jax.readthedocs.io/), [TFLite](https://tensorflow.org/lite/), [fastai](https://www.fast.ai/), [Pandas](https://pandas.pydata.org/) for federated analytics, or even raw [NumPy](https://numpy.org/)
example, [PyTorch](https://pytorch.org), [TensorFlow](https://tensorflow.org), [Hugging Face Transformers](https://huggingface.co/), [PyTorch Lightning](https://pytorchlightning.ai/), [scikit-learn](https://scikit-learn.org/), [JAX](https://jax.readthedocs.io/), [TFLite](https://tensorflow.org/lite/), [fastai](https://www.fast.ai/), [MLX](https://ml-explore.github.io/mlx/build/html/index.html), [XGBoost](https://xgboost.readthedocs.io/en/stable/), [Pandas](https://pandas.pydata.org/) for federated analytics, or even raw [NumPy](https://numpy.org/)
for users who enjoy computing gradients by hand.

- **Understandable**: Flower is written with maintainability in mind. The
Expand Down Expand Up @@ -80,7 +79,7 @@ Stay tuned, more tutorials are coming soon. Topics include **Privacy and Securit
- [Quickstart (TensorFlow)](https://flower.dev/docs/framework/tutorial-quickstart-tensorflow.html)
- [Quickstart (PyTorch)](https://flower.dev/docs/framework/tutorial-quickstart-pytorch.html)
- [Quickstart (Hugging Face)](https://flower.dev/docs/framework/tutorial-quickstart-huggingface.html)
- [Quickstart (PyTorch Lightning [code example])](https://flower.dev/docs/framework/tutorial-quickstart-pytorch-lightning.html)
- [Quickstart (PyTorch Lightning)](https://flower.dev/docs/framework/tutorial-quickstart-pytorch-lightning.html)
- [Quickstart (Pandas)](https://flower.dev/docs/framework/tutorial-quickstart-pandas.html)
- [Quickstart (fastai)](https://flower.dev/docs/framework/tutorial-quickstart-fastai.html)
- [Quickstart (JAX)](https://flower.dev/docs/framework/tutorial-quickstart-jax.html)
Expand All @@ -99,11 +98,16 @@ Flower Baselines is a collection of community-contributed projects that reproduc
- [FedMLB](https://github.com/adap/flower/tree/main/baselines/fedmlb)
- [FedPer](https://github.com/adap/flower/tree/main/baselines/fedper)
- [FedProx](https://github.com/adap/flower/tree/main/baselines/fedprox)
- [FedNova](https://github.com/adap/flower/tree/main/baselines/fednova)
- [HeteroFL](https://github.com/adap/flower/tree/main/baselines/heterofl)
- [FedAvgM](https://github.com/adap/flower/tree/main/baselines/fedavgm)
- [FedWav2vec2](https://github.com/adap/flower/tree/main/baselines/fedwav2vec2)
- [FjORD](https://github.com/adap/flower/tree/main/baselines/fjord)
- [MOON](https://github.com/adap/flower/tree/main/baselines/moon)
- [niid-Bench](https://github.com/adap/flower/tree/main/baselines/niid_bench)
- [TAMUNA](https://github.com/adap/flower/tree/main/baselines/tamuna)
- [FedVSSL](https://github.com/adap/flower/tree/main/baselines/fedvssl)
- [FedXGBoost](https://github.com/adap/flower/tree/main/baselines/hfedxgboost)
- [FedPara](https://github.com/adap/flower/tree/main/baselines/fedpara)
- [FedAvg](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/flwr_baselines/publications/fedavg_mnist)
- [FedOpt](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/flwr_baselines/publications/adaptive_federated_optimization)
Expand All @@ -129,14 +133,19 @@ Quickstart examples:
- [Quickstart (XGBoost)](https://github.com/adap/flower/tree/main/examples/xgboost-quickstart)
- [Quickstart (Android [TFLite])](https://github.com/adap/flower/tree/main/examples/android)
- [Quickstart (iOS [CoreML])](https://github.com/adap/flower/tree/main/examples/ios)
- [Quickstart (MLX)](https://github.com/adap/flower/tree/main/examples/quickstart-mlx)
- [Quickstart (XGBoost)](https://github.com/adap/flower/tree/main/examples/xgboost-quickstart)

Other [examples](https://github.com/adap/flower/tree/main/examples):

- [Raspberry Pi & Nvidia Jetson Tutorial](https://github.com/adap/flower/tree/main/examples/embedded-devices)
- [PyTorch: From Centralized to Federated](https://github.com/adap/flower/tree/main/examples/pytorch-from-centralized-to-federated)
- [Vertical FL](https://github.com/adap/flower/tree/main/examples/vertical-fl)
- [Federated Finetuning of OpenAI's Whisper](https://github.com/adap/flower/tree/main/examples/whisper-federated-finetuning)
- [Comprehensive XGBoost](https://github.com/adap/flower/tree/main/examples/xgboost-comprehensive)
- [Advanced Flower with TensorFlow/Keras](https://github.com/adap/flower/tree/main/examples/advanced-tensorflow)
- [Advanced Flower with PyTorch](https://github.com/adap/flower/tree/main/examples/advanced-pytorch)
- Single-Machine Simulation of Federated Learning Systems ([PyTorch](https://github.com/adap/flower/tree/main/examples/simulation_pytorch)) ([Tensorflow](https://github.com/adap/flower/tree/main/examples/simulation_tensorflow))
- Single-Machine Simulation of Federated Learning Systems ([PyTorch](https://github.com/adap/flower/tree/main/examples/simulation-pytorch)) ([Tensorflow](https://github.com/adap/flower/tree/main/examples/simulation-tensorflow))
- [Comprehensive Flower+XGBoost](https://github.com/adap/flower/tree/main/examples/xgboost-comprehensive)
- [Flower through Docker Compose and with Grafana dashboard](https://github.com/adap/flower/tree/main/examples/flower-via-docker-compose)

Expand Down
Loading