Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: modify BaseAdaptDeep because of batch and dataset length issues #52

Merged
merged 3 commits into from
Apr 26, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
120 changes: 85 additions & 35 deletions adapt/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -958,9 +958,10 @@ def fit(self, X, y=None, Xt=None, yt=None, domains=None, **fit_params):
epochs = fit_params.get("epochs", 1)
batch_size = fit_params.pop("batch_size", 32)
shuffle = fit_params.pop("shuffle", True)
buffer_size = fit_params.pop("buffer_size", None)
validation_data = fit_params.pop("validation_data", None)
validation_split = fit_params.pop("validation_split", 0.)
validation_batch_size = fit_params.pop("validation_batch_size", batch_size)
validation_batch_size = fit_params.get("validation_batch_size", batch_size)

# 2. Prepare datasets

Expand Down Expand Up @@ -998,8 +999,7 @@ def fit(self, X, y=None, Xt=None, yt=None, domains=None, **fit_params):
for dom in range(self.n_sources_))
)

dataset_src = tf.data.Dataset.zip((dataset_Xs, dataset_ys))

dataset_src = tf.data.Dataset.zip((dataset_Xs, dataset_ys))
else:
dataset_src = X

Expand Down Expand Up @@ -1029,47 +1029,62 @@ def fit(self, X, y=None, Xt=None, yt=None, domains=None, **fit_params):
self._initialize_networks()
if isinstance(Xt, tf.data.Dataset):
first_elem = next(iter(Xt))
if (not isinstance(first_elem, tuple) or
not len(first_elem)==2):
raise ValueError("When first argument is a dataset. "
"It should return (x, y) tuples.")
if not isinstance(first_elem, tuple):
shape = first_elem.shape
else:
shape = first_elem[0].shape
if self._check_for_batch(Xt):
shape = shape[1:]
else:
shape = Xt.shape[1:]
self._initialize_weights(shape)

# validation_data = self._check_validation_data(validation_data,
# validation_batch_size,
# shuffle)

# 3.5 Get datasets length
self.length_src_ = self._get_length_dataset(dataset_src, domain="src")
self.length_tgt_ = self._get_length_dataset(dataset_tgt, domain="tgt")


# 4. Prepare validation dataset
if validation_data is None and validation_split>0.:
if shuffle:
dataset_src = dataset_src.shuffle(buffer_size=1024)
frac = int(len(dataset_src)*validation_split)
dataset_src = dataset_src.shuffle(buffer_size=self.length_src_,
reshuffle_each_iteration=False)
frac = int(self.length_src_*validation_split)
validation_data = dataset_src.take(frac)
dataset_src = dataset_src.skip(frac)
validation_data = validation_data.batch(batch_size)
if not self._check_for_batch(validation_data):
validation_data = validation_data.batch(validation_batch_size)

if validation_data is not None:
if isinstance(validation_data, tf.data.Dataset):
if not self._check_for_batch(validation_data):
validation_data = validation_data.batch(validation_batch_size)


# 5. Set datasets
# Same length for src and tgt + complete last batch + shuffle
try:
max_size = max(len(dataset_src), len(dataset_tgt))
max_size = np.ceil(max_size / batch_size) * batch_size
repeat_src = np.ceil(max_size/len(dataset_src))
repeat_tgt = np.ceil(max_size/len(dataset_tgt))

dataset_src = dataset_src.repeat(repeat_src)
dataset_tgt = dataset_tgt.repeat(repeat_tgt)

self.total_steps_ = float(np.ceil(max_size/batch_size)*epochs)
except:
pass

if shuffle:
dataset_src = dataset_src.shuffle(buffer_size=1024)
dataset_tgt = dataset_tgt.shuffle(buffer_size=1024)
if buffer_size is None:
dataset_src = dataset_src.shuffle(buffer_size=self.length_src_,
reshuffle_each_iteration=True)
dataset_tgt = dataset_tgt.shuffle(buffer_size=self.length_tgt_,
reshuffle_each_iteration=True)
else:
dataset_src = dataset_src.shuffle(buffer_size=buffer_size,
reshuffle_each_iteration=True)
dataset_tgt = dataset_tgt.shuffle(buffer_size=buffer_size,
reshuffle_each_iteration=True)

max_size = max(self.length_src_, self.length_tgt_)
max_size = np.ceil(max_size / batch_size) * batch_size
repeat_src = np.ceil(max_size/self.length_src_)
repeat_tgt = np.ceil(max_size/self.length_tgt_)

dataset_src = dataset_src.repeat(repeat_src).take(max_size)
dataset_tgt = dataset_tgt.repeat(repeat_tgt).take(max_size)

self.total_steps_ = float(np.ceil(max_size/batch_size)*epochs)

# 5. Pretraining
if not hasattr(self, "pretrain_"):
Expand Down Expand Up @@ -1097,14 +1112,14 @@ def fit(self, X, y=None, Xt=None, yt=None, domains=None, **fit_params):
pre_verbose = prefit_params.pop("verbose", verbose)
pre_epochs = prefit_params.pop("epochs", epochs)
pre_batch_size = prefit_params.pop("batch_size", batch_size)
pre_shuffle = prefit_params.pop("shuffle", shuffle)
prefit_params.pop("validation_data", None)
prefit_params.pop("validation_split", None)
prefit_params.pop("validation_batch_size", None)

# !!! shuffle is already done
dataset = tf.data.Dataset.zip((dataset_src, dataset_tgt)).batch(pre_batch_size)

dataset = tf.data.Dataset.zip((dataset_src, dataset_tgt))

if not self._check_for_batch(dataset):
dataset = dataset.batch(pre_batch_size)

hist = super().fit(dataset, validation_data=validation_data,
epochs=pre_epochs, verbose=pre_verbose, **prefit_params)

Expand All @@ -1121,7 +1136,10 @@ def fit(self, X, y=None, Xt=None, yt=None, domains=None, **fit_params):
self.history_ = {}

# .7 Training
dataset = tf.data.Dataset.zip((dataset_src, dataset_tgt)).batch(batch_size)
dataset = tf.data.Dataset.zip((dataset_src, dataset_tgt))

if not self._check_for_batch(dataset):
dataset = dataset.batch(batch_size)

self.pretrain_ = False

Expand Down Expand Up @@ -1257,7 +1275,8 @@ def compile(self,
if "_" in name:
new_name = ""
for split in name.split("_"):
new_name += split[0]
if len(split) > 0:
new_name += split[0]
name = new_name
else:
name = name[:3]
Expand Down Expand Up @@ -1571,6 +1590,37 @@ def _initialize_weights(self, shape_X):
X_enc = self.encoder_(np.zeros((1,) + shape_X))
if hasattr(self, "discriminator_"):
self.discriminator_(X_enc)


def _get_length_dataset(self, dataset, domain="src"):
try:
length = len(dataset)
except:
if self.verbose:
print("Computing %s dataset size..."%domain)
if not hasattr(self, "length_%s_"%domain):
length = 0
for _ in dataset:
length += 1
else:
length = getattr(self, "length_%s_"%domain)
if self.verbose:
print("Done!")
return length


def _check_for_batch(self, dataset):
if dataset.__class__.__name__ == "BatchDataset":
return True
if hasattr(dataset, "_input_dataset"):
return self._check_for_batch(dataset._input_dataset)
elif hasattr(dataset, "_datasets"):
checks = []
for data in dataset._datasets:
checks.append(self._check_for_batch(data))
return np.all(checks)
else:
return False


def _unpack_data(self, data):
Expand Down
6 changes: 6 additions & 0 deletions adapt/feature_based/_fa.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@

import numpy as np
from sklearn.utils import check_array
from sklearn.exceptions import NotFittedError

from adapt.base import BaseAdaptEstimator, make_insert_doc
from adapt.utils import check_arrays
Expand Down Expand Up @@ -221,6 +222,11 @@ def transform(self, X, domain="tgt"):
domain of ``X`` in order to apply the appropriate feature transformation.
"""
X = check_array(X, allow_nd=True)

if not hasattr(self, "n_domains_"):
raise NotFittedError("FA model is not fitted yet, please "
"call 'fit_transform' or 'fit' first.")

if domain in ["tgt", "target"]:
X_emb = np.concatenate((np.zeros((len(X), X.shape[-1]*self.n_domains_)),
X,
Expand Down
1 change: 1 addition & 0 deletions adapt/instance_based/_kmm.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
import numpy as np
from sklearn.metrics import pairwise
from sklearn.utils import check_array
from sklearn.exceptions import NotFittedError
from sklearn.metrics.pairwise import KERNEL_PARAMS
from cvxopt import matrix, solvers

Expand Down
4 changes: 2 additions & 2 deletions adapt/instance_based/_tradaboost.py
Original file line number Diff line number Diff line change
Expand Up @@ -384,8 +384,8 @@ def _boost(self, iboost, Xs, ys, Xt, yt,
self.estimators_.append(estimator)
self.estimator_errors_.append(estimator_error)

if estimator_error <= 0.:
return None, None
# if estimator_error <= 0.:
# return None, None

beta_t = estimator_error / (2. - estimator_error)

Expand Down
24 changes: 24 additions & 0 deletions tests/test_adda.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,4 +70,28 @@ def test_fit():
# assert np.sum(np.abs(
# model.predict(Xs, "source").ravel() - ys)) < 0.01
assert np.sum(np.abs(np.ravel(model.predict_task(Xs, domain="src")) - ys)) < 11
assert np.sum(np.abs(model.predict(Xt).ravel() - yt)) < 25


def test_nopretrain():
tf.random.set_seed(0)
np.random.seed(0)
encoder = _get_encoder()
task = _get_task()

src_model = Sequential()
src_model.add(encoder)
src_model.add(task)
src_model.compile(loss="mse", optimizer=Adam(0.01))

src_model.fit(Xs, ys, epochs=100, batch_size=34, verbose=0)

Xs_enc = src_model.predict(Xs)

model = ADDA(encoder, task, _get_discriminator(), pretrain=False,
loss="mse", optimizer=Adam(0.01), metrics=["mae"],
copy=False)
model.fit(Xs_enc, ys, Xt, epochs=30, batch_size=34, verbose=0)
assert np.abs(model.encoder_.get_weights()[0][1][0]) < 0.2
assert np.sum(np.abs(np.ravel(model.predict(Xs)) - ys)) < 25
assert np.sum(np.abs(model.predict(Xt).ravel() - yt)) < 25
56 changes: 55 additions & 1 deletion tests/test_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,10 @@
yt = 0.2 * Xt[:, 0].ravel()


def _custom_metric(yt, yp):
return tf.shape(yt)[0]


class DummyFeatureBased(BaseAdaptEstimator):

def fit_transform(self, Xs, **kwargs):
Expand Down Expand Up @@ -239,4 +243,54 @@ def test_multisource():
model.fit(Xs, ys, Xt=Xt, domains=np.random.choice(2, len(Xs)))
model.predict(Xs)
model.evaluate(Xs, ys)
assert model.n_sources_ == 2
assert model.n_sources_ == 2


def test_complete_batch():
model = BaseAdaptDeep(Xt=Xt[:3], metrics=[_custom_metric])
model.fit(Xs, ys, batch_size=120)
assert model.history_["cm"][0] == 120

model = BaseAdaptDeep(Xt=Xt[:10], yt=yt[:10], metrics=[_custom_metric])
model.fit(Xs[:23], ys[:23], batch_size=17, buffer_size=1024)
assert model.history_["cm"][0] == 17
assert model.total_steps_ == 2

dataset = tf.data.Dataset.zip((tf.data.Dataset.from_tensor_slices(Xs),
tf.data.Dataset.from_tensor_slices(ys.reshape(-1,1))
))
Xtt = tf.data.Dataset.from_tensor_slices(Xt)
model = BaseAdaptDeep(Xt=Xtt, metrics=[_custom_metric])
model.fit(dataset, batch_size=32, validation_data=dataset)
assert model.history_["cm"][0] == 32

model = BaseAdaptDeep(Xt=Xtt.batch(32), metrics=[_custom_metric])
model.fit(dataset.batch(32), batch_size=48, validation_data=dataset.batch(32))
assert model.history_["cm"][0] == 25

def gens():
for i in range(40):
yield Xs[i], ys[i]

dataset = tf.data.Dataset.from_generator(gens,
output_shapes=([2], []),
output_types=("float32", "float32"))

def gent():
for i in range(50):
yield Xs[i], ys[i]

dataset2 = tf.data.Dataset.from_generator(gent,
output_shapes=([2], []),
output_types=("float32", "float32"))

model = BaseAdaptDeep(metrics=[_custom_metric])
model.fit(dataset, Xt=dataset2, validation_data=dataset, batch_size=22)
assert model.history_["cm"][0] == 22
assert model.total_steps_ == 3
assert model.length_src_ == 40
assert model.length_tgt_ == 50

model.fit(dataset, Xt=dataset2, validation_data=dataset, batch_size=32)
assert model.total_steps_ == 2
assert model.history_["cm"][-1] == 32
2 changes: 1 addition & 1 deletion tests/test_ccsa.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ def test_ccsa():
optimizer="adam", metrics=["acc"], gamma=0.1, random_state=0)
ccsa.fit(Xs, tf.one_hot(ys, 2).numpy(), Xt=Xt[ind],
yt=tf.one_hot(yt, 2).numpy()[ind], epochs=100, verbose=0)
assert np.mean(ccsa.predict(Xt).argmax(1) == yt) > 0.9
assert np.mean(ccsa.predict(Xt).argmax(1) == yt) > 0.8

ccsa = CCSA(task=task, loss="categorical_crossentropy",
optimizer="adam", metrics=["acc"], gamma=1., random_state=0)
Expand Down
4 changes: 2 additions & 2 deletions tests/test_cdan.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,8 +72,8 @@ def test_fit_lambda_one_no_entropy():
random_state=0, validation_data=(Xt, ytt))
model.fit(Xs, yss, Xt, ytt,
epochs=300, verbose=0)
assert model.history_['acc'][-1] > 0.9
assert model.history_['val_acc'][-1] > 0.9
assert model.history_['acc'][-1] > 0.8
assert model.history_['val_acc'][-1] > 0.8


def test_fit_lambda_entropy():
Expand Down
2 changes: 1 addition & 1 deletion tests/test_dann.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@ def test_fit_lambda_one():
epochs=100, batch_size=32, verbose=0)
assert isinstance(model, Model)
assert np.abs(model.encoder_.get_weights()[0][1][0] /
model.encoder_.get_weights()[0][0][0]) < 0.07
model.encoder_.get_weights()[0][0][0]) < 0.15
assert np.sum(np.abs(model.predict(Xs) - ys)) < 1
assert np.sum(np.abs(model.predict(Xt) - yt)) < 2

Expand Down