Skip to content

🤘 TT-NN operator library, and TT-Metalium low level kernel programming model.

License

Notifications You must be signed in to change notification settings

adifrancescoTT/tt-metal

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ttnn logo

TT-NN is python & C++ Neural Network OP library.


Grayskull (GS) Models

Model Batch End-to-end throughput [1] Device throughput [2] Target
ResNet-50 (fps) 20 2,070 7,200 10,000
BERT-Large (sen/s) 12 362 406 410
Falcon7B-decode (t/s) 32 135 135 140
U-Net coming soon
T5 small coming soon
Bloom coming soon

[1] - Observed from the host. Includes dispatch overahed and kernel execution time.

[2] - Ignoring host overhead. Kernel execution time only.

Wormhole (WH) Models

Model Batch End-to-end throughput [1] Device throughput [2] Target
Falcon-7B-decode (t/s/u) 32 6.6 11.6 14
Mistral-7B-decode (t/s/u) 32 3.3 12.6 14
Mamba-2.8B-decode (t/s/u) 32 coming soon 17
Stable Diffusion 1.4 512x512 1 coming soon

T3000 (2x4 mesh of WHs) Models

Model Batch Throughput
Falcon40B coming soon
LLaMA-2-70B coming soon
Mixtral7Bx8 coming soon
ResNet50 (data parallel) coming soon

Using TT-NN ops and tensors

import ttnn
import torch

with ttnn.manage_device(device_id=0) as device:
   a = torch.ones((5, 7))
   b = torch.ones((1, 7))

   a = ttnn.from_torch(a, device=device, dtype=ttnn.bfloat16, layout=ttnn.TILE_LAYOUT)
   b = ttnn.from_torch(b, device=device, dtype=ttnn.bfloat16, layout=ttnn.TILE_LAYOUT)

   output = a + b
   output = ttnn.to_torch(output)

print(output)

TT-Metalium logo

TT-Metalium is our low-level programming model, enabling kernel development for Tenstorrent hardware.

Getting started

Get started with simple kernels.

About

🤘 TT-NN operator library, and TT-Metalium low level kernel programming model.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 51.2%
  • Python 41.9%
  • C 3.7%
  • Jupyter Notebook 2.3%
  • Makefile 0.3%
  • HTML 0.3%
  • Other 0.3%