Skip to content

Remote file existence check vulnerability in `mlflow server` and `mlflow ui` CLIs

Moderate severity GitHub Reviewed Published Mar 24, 2023 in mlflow/mlflow • Updated Sep 25, 2024

Package

pip mlflow (pip)

Affected versions

<= 2.2.0

Patched versions

2.2.1

Description

Impact

Users of the MLflow Open Source Project who are hosting the MLflow Model Registry using the mlflow server or mlflow ui commands using an MLflow version older than MLflow 2.2.1 may be vulnerable to a remote file existence check exploit if they are not limiting who can query their server (for example, by using a cloud VPC, an IP allowlist for inbound requests, or authentication / authorization middleware).

This issue only affects users and integrations that run the mlflow server and mlflow ui commands. Integrations that do not make use of mlflow server or mlflow ui are unaffected; for example, the Databricks Managed MLflow product and MLflow on Azure Machine Learning do not make use of these commands and are not impacted by these vulnerabilities in any way.

The vulnerability detailed in https://nvd.nist.gov/vuln/detail/CVE-2023-1176 enables an actor to check the existence of arbitrary files unrelated to MLflow from the host server, including any files stored in remote locations to which the host server has access.

Patches

This vulnerability has been patched in MLflow 2.2.1, which was released to PyPI on March 2nd, 2023. If you are using mlflow server or mlflow ui with the MLflow Model Registry, we recommend upgrading to MLflow 2.2.1 as soon as possible.

Workarounds

If you are using the MLflow open source mlflow server or mlflow ui commands, we strongly recommend limiting who can access your MLflow Model Registry and MLflow Tracking servers using a cloud VPC, an IP allowlist for inbound requests, authentication / authorization middleware, or another access restriction mechanism of your choosing.

If you are using the MLflow open source mlflow server or mlflow ui commands, we also strongly recommend limiting the remote files to which your MLflow Model Registry and MLflow Tracking servers have access. For example, if your MLflow Model Registry or MLflow Tracking server uses cloud-hosted blob storage for MLflow artifacts, make sure to restrict the scope of your server's cloud credentials such that it can only access files and directories related to MLflow.

References

More information about the vulnerability is available at https://nvd.nist.gov/vuln/detail/CVE-2023-1176.

References

@dbczumar dbczumar published to mlflow/mlflow Mar 24, 2023
Published by the National Vulnerability Database Mar 24, 2023
Published to the GitHub Advisory Database Mar 24, 2023
Reviewed Mar 24, 2023
Last updated Sep 25, 2024

Severity

Moderate

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v4 base metrics

Exploitability Metrics
Attack Vector Local
Attack Complexity Low
Attack Requirements None
Privileges Required Low
User interaction None
Vulnerable System Impact Metrics
Confidentiality Low
Integrity None
Availability None
Subsequent System Impact Metrics
Confidentiality None
Integrity None
Availability None

CVSS v4 base metrics

Exploitability Metrics
Attack Vector: This metric reflects the context by which vulnerability exploitation is possible. This metric value (and consequently the resulting severity) will be larger the more remote (logically, and physically) an attacker can be in order to exploit the vulnerable system. The assumption is that the number of potential attackers for a vulnerability that could be exploited from across a network is larger than the number of potential attackers that could exploit a vulnerability requiring physical access to a device, and therefore warrants a greater severity.
Attack Complexity: This metric captures measurable actions that must be taken by the attacker to actively evade or circumvent existing built-in security-enhancing conditions in order to obtain a working exploit. These are conditions whose primary purpose is to increase security and/or increase exploit engineering complexity. A vulnerability exploitable without a target-specific variable has a lower complexity than a vulnerability that would require non-trivial customization. This metric is meant to capture security mechanisms utilized by the vulnerable system.
Attack Requirements: This metric captures the prerequisite deployment and execution conditions or variables of the vulnerable system that enable the attack. These differ from security-enhancing techniques/technologies (ref Attack Complexity) as the primary purpose of these conditions is not to explicitly mitigate attacks, but rather, emerge naturally as a consequence of the deployment and execution of the vulnerable system.
Privileges Required: This metric describes the level of privileges an attacker must possess prior to successfully exploiting the vulnerability. The method by which the attacker obtains privileged credentials prior to the attack (e.g., free trial accounts), is outside the scope of this metric. Generally, self-service provisioned accounts do not constitute a privilege requirement if the attacker can grant themselves privileges as part of the attack.
User interaction: This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable system. This metric determines whether the vulnerability can be exploited solely at the will of the attacker, or whether a separate user (or user-initiated process) must participate in some manner.
Vulnerable System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the VULNERABLE SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the VULNERABLE SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the VULNERABLE SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
Subsequent System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the SUBSEQUENT SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the SUBSEQUENT SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the SUBSEQUENT SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
CVSS:4.0/AV:L/AC:L/AT:N/PR:L/UI:N/VC:L/VI:N/VA:N/SC:N/SI:N/SA:N

EPSS score

0.044%
(14th percentile)

Weaknesses

CVE ID

CVE-2023-1176

GHSA ID

GHSA-wp72-7hj9-5265

Source code

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.