Skip to content

Incorrect validation of `SaveV2` inputs

High severity GitHub Reviewed Published Aug 11, 2021 in tensorflow/tensorflow • Updated Feb 1, 2023

Package

pip tensorflow (pip)

Affected versions

< 2.3.4
>= 2.4.0, < 2.4.3
= 2.5.0

Patched versions

2.3.4
2.4.3
2.5.1
pip tensorflow-cpu (pip)
< 2.3.4
>= 2.4.0, < 2.4.3
= 2.5.0
2.3.4
2.4.3
2.5.1
pip tensorflow-gpu (pip)
< 2.3.4
>= 2.4.0, < 2.4.3
= 2.5.0
2.3.4
2.4.3
2.5.1

Description

Impact

The code for tf.raw_ops.SaveV2 does not properly validate the inputs and an attacker can trigger a null pointer dereference:

import tensorflow as tf

tf.raw_ops.SaveV2(
  prefix=['tensorflow'],
  tensor_name=['v'],
  shape_and_slices=[],
  tensors=[1,2,3])

The implementation uses ValidateInputs to check that the input arguments are valid. This validation would have caught the illegal state represented by the reproducer above.

However, the validation uses OP_REQUIRES which translates to setting the Status object of the current OpKernelContext to an error status, followed by an empty return statement which just terminates the execution of the function it is present in. However, this does not mean that the kernel execution is finalized: instead, execution continues from the next line in Compute that follows the call to ValidateInputs. This is equivalent to lacking the validation.

Patches

We have patched the issue in GitHub commit 9728c60e136912a12d99ca56e106b7cce7af5986.

The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by members of the Aivul Team from Qihoo 360.

References

@mihaimaruseac mihaimaruseac published to tensorflow/tensorflow Aug 11, 2021
Published by the National Vulnerability Database Aug 12, 2021
Reviewed Aug 23, 2021
Published to the GitHub Advisory Database Aug 25, 2021
Last updated Feb 1, 2023

Severity

High

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v3 base metrics

Attack vector
Local
Attack complexity
Low
Privileges required
Low
User interaction
None
Scope
Unchanged
Confidentiality
High
Integrity
High
Availability
High

CVSS v3 base metrics

Attack vector: More severe the more the remote (logically and physically) an attacker can be in order to exploit the vulnerability.
Attack complexity: More severe for the least complex attacks.
Privileges required: More severe if no privileges are required.
User interaction: More severe when no user interaction is required.
Scope: More severe when a scope change occurs, e.g. one vulnerable component impacts resources in components beyond its security scope.
Confidentiality: More severe when loss of data confidentiality is highest, measuring the level of data access available to an unauthorized user.
Integrity: More severe when loss of data integrity is the highest, measuring the consequence of data modification possible by an unauthorized user.
Availability: More severe when the loss of impacted component availability is highest.
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

EPSS score

0.044%
(13th percentile)

Weaknesses

CVE ID

CVE-2021-37648

GHSA ID

GHSA-wp77-4gmm-7cq8

Source code

No known source code
Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.