Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

speed improvement for calculating (expected_)integrated_grad for multiple outputs at the same time. #84

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 46 additions & 10 deletions src/crested/tl/_explainer_tf.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,8 @@
Adapted from: https://github.com/p-koo/tfomics/blob/master/tfomics/
"""

from __future__ import annotations

import numpy as np
import tensorflow as tf

Expand Down Expand Up @@ -59,7 +61,7 @@ def integrated_grad(self, X, baseline_type="random", num_steps=25):
func=self.func,
)
scores.append(intgrad_scores)
return np.concatenate(scores, axis=0)
return np.array(scores)

def expected_integrated_grad(
self, X, num_baseline=25, baseline_type="random", num_steps=25
Expand All @@ -78,7 +80,7 @@ def expected_integrated_grad(
func=self.func,
)
scores.append(intgrad_scores)
return np.concatenate(scores, axis=0)
return np.array(scores)

def mutagenesis(self, X, class_index=None):
"""In silico mutagenesis analysis for a given sequence."""
Expand All @@ -97,18 +99,38 @@ def set_baseline(self, x, baseline, num_samples):
return baseline


def saliency_map(X, model, class_index=None, func=tf.math.reduce_mean):
def saliency_map(
X, model, class_index: int | list[int] | None = None, func=tf.math.reduce_mean
):
"""Fast function to generate saliency maps."""
if not tf.is_tensor(X):
X = tf.Variable(X)

with tf.GradientTape() as tape:
# use persistent tape so gradient can be calculated for each output in class_index, in case
# class_index is a list of indexes.
with tf.GradientTape(persistent=True) as tape:
tape.watch(X)
if class_index is not None:
outputs = model(X)[:, class_index]
output = model(X)
if isinstance(class_index, int):
# get output for class (C)
outputs_C = [output[:, class_index]]
elif isinstance(class_index, list):
# get output for multiple classes
outputs_C = [output[:, c] for c in class_index]
elif class_index is None:
# legacy mode -- not sure if `func` is even needed here??
outputs_C = [func(model(X))]
else:
outputs = func(model(X))
return tape.gradient(outputs, X)
raise ValueError(
f"class_index should be either an integer a list of integers or None, not: {class_index}."
)
grads = np.empty((len(outputs_C), *X.shape))
for i in range(len(outputs_C)):
grads[i] = tape.gradient(outputs_C[i], X)
# explicitly delete the tape, needed because persistent is True
del tape
# squeeze grads so first dimension is dropped in case class_index is a single int.
return grads.squeeze()


@tf.function
Expand Down Expand Up @@ -148,7 +170,12 @@ def smoothgrad(


def integrated_grad(
x, model, baseline, num_steps=25, class_index=None, func=tf.math.reduce_mean
x,
model,
baseline,
num_steps=25,
class_index: int | list[int] | None = None,
func=tf.math.reduce_mean,
):
"""Calculate integrated gradients for a given sequence."""

Expand All @@ -167,8 +194,17 @@ def interpolate_data(baseline, x, steps):
steps = tf.linspace(start=0.0, stop=1.0, num=num_steps + 1)
x_interp = interpolate_data(baseline, x, steps)
grad = saliency_map(x_interp, model, class_index=class_index, func=func)
# at this point the shape of grad is either:
# - (num_steps + 1, *x.shape) in case class_index is None or a single int.
# - (len(class_index), num_steps + 1, *x.shape) in case class_idnex is a list of int.
if len(grad.shape) == 4:
# second case, put num_steps + 1 on first axis
grad = grad.swapaxes(0, 1)
avg_grad = integral_approximation(grad)
avg_grad = np.expand_dims(avg_grad, axis=0)
if len(avg_grad.shape) != 3:
# first case, in this case the dimension should be expanded.
# in the second case they are already expanded.
avg_grad = np.expand_dims(avg_grad, axis=0)
return avg_grad


Expand Down
Loading